Episodes

Monday Jan 31, 2022
Episode 468 - Stopping frostbite and bacteria using chemistry and physics
Monday Jan 31, 2022
Monday Jan 31, 2022
How can we protect skin from frostbite before it happens? Scientists freeze cells in the lab all the time, so how can that be used to help prevent frostbite? When treating frostbite minutes can make a huge difference. How can we improve prevention of the worst injuries from frostbite? You've heard of sunscreen but what about frostbite cream. Antiobiotic resistance is a serious issue, but what plasma could be a secret weapon. Using plasma we can engineer antimicrobial surfaces. Plasma sintered surfaces can wipe out bacteria.
- Aanchal Gupta, Betsy Reshma G, Praveen Singh, Ekta Kohli, Shantanu Sengupta, Munia Ganguli. A Combination of Synthetic Molecules Acts as Antifreeze for the Protection of Skin against Cold-Induced Injuries. ACS Applied Bio Materials, 2021; 5 (1): 252 DOI: 10.1021/acsabm.1c01058
- Anton Nikiforov, Chuanlong Ma, Andrei Choukourov, Fabio Palumbo. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics, 2022; 131 (1): 011102 DOI: 10.1063/5.0066724

Monday Jan 24, 2022
Episode 467 - Repairing throats and better implants
Monday Jan 24, 2022
Monday Jan 24, 2022
How can we make stronger implants that don't get rejected by the body? Bioactive materials can help make implants feel more at home. Replacing a knee or a hip requires not just strength but also compatibility. A new coating method makes it easier for implants to fit in. An implant has to be strong yet flexible, friendly to cells but not bacteria - it's challenging. Your vocal chords are subject to extreme forces, so how can we design an implant to repair them? Hydro-gels can help repair damaged organs and tissue even in extreme environments like your vocal chods.
- Imran Deen, Gurpreet Singh Selopal, Zhiming M. Wang, Federico Rosei. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022; 607: 869 DOI: 10.1016/j.jcis.2021.08.199
- Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, Luc Mongeau. Injectable, Pore‐Forming, Perfusable Double‐Network Hydrogels Resilient to Extreme Biomechanical Stimulations. Advanced Science, 2021; 2102627 DOI: 10.1002/advs.202102627

Monday Jan 10, 2022
Monday Jan 10, 2022
From Hedgehogs to mouthwash, we check in on the arms race against bacteria. MRSA super-bugs are a super problem for humans, but some pre-date the modern era. MRSA super-bugs have been around since the Industrial revolution, at least on hedgehogs. The skin of hedgehogs is a battlefield between Fungus and Bacteria, and whoever wins, we loose. We often focus on Humans vs Bacteria, but it's actually a triple threat with Fungus. The fight Fungus vs Bacteria can lead to the development of antibiotic resistance. The mouth is the gate in the castle like defenses of the human immune system, so what defends it from bacteria attackers? If you have periodontal disease, it can make it easier for other viruses to get into your body. Keeping your mouth free of bacteria plaque can keep your defense against other infections high.
- Jesper Larsen, Claire L. Raisen, Xiaoliang Ba, Nicholas J. Sadgrove, Guillermo F. Padilla-González, Monique S. J. Simmonds, Igor Loncaric, Heidrun Kerschner, Petra Apfalter, Rainer Hartl, Ariane Deplano, Stien Vandendriessche, Barbora Černá Bolfíková, Pavel Hulva, Maiken C. Arendrup, Rasmus K. Hare, Céline Barnadas, Marc Stegger, Raphael N. Sieber, Robert L. Skov, Andreas Petersen, Øystein Angen, Sophie L. Rasmussen, Carmen Espinosa-Gongora, Frank M. Aarestrup, Laura J. Lindholm, Suvi M. Nykäsenoja, Frederic Laurent, Karsten Becker, Birgit Walther, Corinna Kehrenberg, Christiane Cuny, Franziska Layer, Guido Werner, Wolfgang Witte, Ivonne Stamm, Paolo Moroni, Hannah J. Jørgensen, Hermínia de Lencastre, Emilia Cercenado, Fernando García-Garrote, Stefan Börjesson, Sara Hæggman, Vincent Perreten, Christopher J. Teale, Andrew S. Waller, Bruno Pichon, Martin D. Curran, Matthew J. Ellington, John J. Welch, Sharon J. Peacock, David J. Seilly, Fiona J. E. Morgan, Julian Parkhill, Nazreen F. Hadjirin, Jodi A. Lindsay, Matthew T. G. Holden, Giles F. Edwards, Geoffrey Foster, Gavin K. Paterson, Xavier Didelot, Mark A. Holmes, Ewan M. Harrison, Anders R. Larsen. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022; DOI: 10.1038/s41586-021-04265-w
- Carlos J. Rodriguez-Hernandez, Kevin J. Sokoloski, Kendall S. Stocke, Himabindu Dukka, Shunying Jin, Melissa A. Metzler, Konstantin Zaitsev, Boris Shpak, Daonan Shen, Daniel P. Miller, Maxim N. Artyomov, Richard J. Lamont, Juhi Bagaitkar. Microbiome-mediated incapacitation of interferon lambda production in the oral mucosa. Proceedings of the National Academy of Sciences, 2021; 118 (51): e2105170118 DOI: 10.1073/pnas.2105170118

Monday Nov 22, 2021
Episode 458 - Molecular methods to fight fungi and bacteria
Monday Nov 22, 2021
Monday Nov 22, 2021
There's a public health crisis looming beyond the pandemic. Researchers across the world are working to stop the next public health disaster - the rise of antibiotic resistance. We rely on antibiotics to treat various disease but their effectiveness wanes as bacteria builds its resistance. How do we keep track of the changes in bacteria's resistance to antibiotics? What do bird droppings in Cambridge tell us about antibiotic resistance? Developing new antibiotics is tricky, what part of bacteria do you target? Is it better to have a simple molecule or a complex one when tackling bacteria? Bursting the bacteria cell is one way to defeat but its even better to break their building blocks. Fungal infections are growing more resistant to treatment. How can we devleop new categories of anti-fungal treatments?
References
- Joana G. C. Rodrigues, Harisree P. Nair, Christopher O'Kane, Caray A. Walker. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environment. Ecology and Evolution, 2021; 11 (20): 14303 DOI: 10.1002/ece3.8146
- Elisabeth Reithuber, Torbjörn Wixe, Kevin C. Ludwig, Anna Müller, Hanna Uvell, Fabian Grein, Anders E. G. Lindgren, Sandra Muschiol, Priyanka Nannapaneni, Anna Eriksson, Tanja Schneider, Staffan Normark, Birgitta Henriques-Normark, Fredrik Almqvist, Peter Mellroth. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences, 2021; 118 (47): e2108244118 DOI: 10.1073/pnas.2108244118
- Christian DeJarnette, Chris J. Meyer, Alexander R. Jenner, Arielle Butts, Tracy Peters, Martin N. Cheramie, Gregory A. Phelps, Nicole A. Vita, Victoria C. Loudon-Hossler, Richard E. Lee, Glen E. Palmer. Identification of Inhibitors of Fungal Fatty Acid Biosynthesis. ACS Infectious Diseases, 2021; DOI: 10.1021/acsinfecdis.1c00404

Monday Nov 08, 2021
Episode 456 - Responding rapidly to bad smells
Monday Nov 08, 2021
Monday Nov 08, 2021
How does our brain filter and process all those smells? Our brain has a lot of dedicated space for smells, but knowing which is which is tricky. How does our brain respond so quickly to bad smells? We will move out of the way of a bad smell fast. In under half a second you brain can detect and move away from a bad smell. Why are our brains hard wired to detect and react to the smell of caramel? Furaneol gives off a caramel like smell and is found in fruits and even bread. Why does our brain dedicate space to it? What is better at waking you up - a good smell or a bad smell? How do brains process smells even whens sleeping?
- Behzad Iravani, Martin Schaefer, Donald A. Wilson, Artin Arshamian, Johan N. Lundström. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proceedings of the National Academy of Sciences, 2021; 118 (42): e2101209118 DOI: 10.1073/pnas.2101209118
- Franziska Haag, Sandra Hoffmann, Dietmar Krautwurst. Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors. Journal of Agricultural and Food Chemistry, 2021; 69 (37): 10999 DOI: 10.1021/acs.jafc.1c03314
- Alice S. French, Quentin Geissmann, Esteban J. Beckwith, Giorgio F. Gilestro. Sensory processing during sleep in Drosophila melanogaster. Nature, 2021; DOI: 10.1038/s41586-021-03954-w

Monday Oct 11, 2021
Episode 452 - Eureka Prizes 21 - Fighting back against viruses
Monday Oct 11, 2021
Monday Oct 11, 2021
We celebrate the winners of the Eureka Prizes in 2021. The top prizes in Aussie Science shows that it's possible for major science awards to not be male dominated. Are humans just the collateral damage of the war between cholera and protozoa? How does getting eaten actually make cholera stronger? We celebrate the achievements of Australian scientists helping make rotavirus vaccines more accessible for all. Producing vaccines cheaply and locally, that are easy to roll out can save half a million lives each year. Whilst vaccines for rotavirus exist already they are complex and costly. Aussie researchers are helping make it simpler and widely available.
References:
- Gustavo Espinoza-Vergara, Parisa Noorian, Cecilia A. Silva-Valenzuela, Benjamin B. A. Raymond, Christopher Allen, M. Mozammel Hoque, Shuyang Sun, Michael S. Johnson, Mathieu Pernice, Staffan Kjelleberg, Steven P. Djordjevic, Maurizio Labbate, Andrew Camilli, Diane McDougald. Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nature Microbiology, 2019; DOI: 10.1038/s41564-019-0563-x
- Bines, J., At Thobari, J., Satria, C., Handley, A., Watts, E., & Cowley, D. et al. (2018). Human Neonatal Rotavirus Vaccine (RV3-BB) to Target Rotavirus from Birth. New England Journal Of Medicine, 378(8), 719-730. doi: 10.1056/nejmoa1706804
- Mannix, L. (2021). Eureka science prizes go to childhood vaccine and microplastics hotspot hunt. Retrieved 9 October 2021, from https://www.smh.com.au/national/childhood-vaccine-microplastics-hotspot-hunt-take-top-science-gongs-20211007-p58xyi.html
- Protozoans and pathogens make for an infectious mix. (2021). Retrieved 9 October 2021, from https://www.uts.edu.au/news/health-science/protozoans-and-pathogens-make-infectious-mix
- Tu, J. (2021). Meet the women transforming science in Australia: Eureka Prize finalists. Retrieved 9 October 2021, from https://womensagenda.com.au/latest/meet-the-women-transforming-science-in-australia-eureka-prize-finalists/

Monday Oct 11, 2021
Episode 452 - Eureka Prizes 21 - Fighting back against viruses
Monday Oct 11, 2021
Monday Oct 11, 2021
We celebrate the winners of the Eureka Prizes in 2021. The top prizes in Aussie Science shows that it's possible for major science awards to not be male dominated. Are humans just the collateral damage of the war between cholera and protozoa? How does getting eaten actually make cholera stronger? We celebrate the achievements of Australian scientists helping make rotavirus vaccines more accessible for all. Producing vaccines cheaply and locally, that are easy to roll out can save half a million lives each year. Whilst vaccines for rotavirus exist already they are complex and costly. Aussie researchers are helping make it simpler and widely available.
References:
- Gustavo Espinoza-Vergara, Parisa Noorian, Cecilia A. Silva-Valenzuela, Benjamin B. A. Raymond, Christopher Allen, M. Mozammel Hoque, Shuyang Sun, Michael S. Johnson, Mathieu Pernice, Staffan Kjelleberg, Steven P. Djordjevic, Maurizio Labbate, Andrew Camilli, Diane McDougald. Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nature Microbiology, 2019; DOI: 10.1038/s41564-019-0563-x
- Bines, J., At Thobari, J., Satria, C., Handley, A., Watts, E., & Cowley, D. et al. (2018). Human Neonatal Rotavirus Vaccine (RV3-BB) to Target Rotavirus from Birth. New England Journal Of Medicine, 378(8), 719-730. doi: 10.1056/nejmoa1706804
- Mannix, L. (2021). Eureka science prizes go to childhood vaccine and microplastics hotspot hunt. Retrieved 9 October 2021, from https://www.smh.com.au/national/childhood-vaccine-microplastics-hotspot-hunt-take-top-science-gongs-20211007-p58xyi.html
- Protozoans and pathogens make for an infectious mix. (2021). Retrieved 9 October 2021, from https://www.uts.edu.au/news/health-science/protozoans-and-pathogens-make-infectious-mix
- Tu, J. (2021). Meet the women transforming science in Australia: Eureka Prize finalists. Retrieved 9 October 2021, from https://womensagenda.com.au/latest/meet-the-women-transforming-science-in-australia-eureka-prize-finalists/

Monday Aug 30, 2021
Episode 446 - Brains and Guts connected in surprising ways
Monday Aug 30, 2021
Monday Aug 30, 2021
Your brain and gut are connected in surprising ways. Inside your GI tract is a surprisingly complex nervous system. Your GI tract has it's own nervous system which is more like the spine than other organs. How does your GI tract differ from other soft hollow organs? The connection between gut microbiomes and brains is clear, but not well understood. Certain microbes can cause neurodegeneration in brains just as bad as a poor diet and no oxygen. How can we stop brains copy and pasting toxic byproducts across our brains? Proteins keep our brains in check and prevent build up of toxic byproducts, but this can be used to put the brakes on neurodegeneration.
References:
- Nick J. Spencer, Lee Travis, Lukasz Wiklendt, Marcello Costa, Timothy J. Hibberd, Simon J. Brookes, Phil Dinning, Hongzhen Hu, David A. Wattchow, Julian Sorensen. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Communications Biology, 2021; 4 (1) DOI: 10.1038/s42003-021-02485-4
- Christine A. Olson, Alonso J. Iñiguez, Grace E. Yang, Ping Fang, Geoffrey N. Pronovost, Kelly G. Jameson, Tomiko K. Rendon, Jorge Paramo, Jacob T. Barlow, Rustem F. Ismagilov, Elaine Y. Hsiao. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia. Cell Host & Microbe, 2021; DOI: 10.1016/j.chom.2021.07.004
- Chingakham Ranjit Singh, M. Rebecca Glineburg, Chelsea Moore, Naoki Tani, Rahul Jaiswal, Ye Zou, Eric Aube, Sarah Gillaspie, Mackenzie Thornton, Ariana Cecil, Madelyn Hilgers, Azuma Takasu, Izumi Asano, Masayo Asano, Carlos R. Escalante, Akira Nakamura, Peter K. Todd, Katsura Asano. Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Reports, 2021; 36 (2): 109376 DOI: 10.1016/j.celrep.2021.109376

Monday Jul 26, 2021
Episode 441 - Augmenting the human body to keep it safe
Monday Jul 26, 2021
Monday Jul 26, 2021
Using technology and tools to make the human body safer. How can we use exoskeletons to keep people safe? Does using a tool like an exoskeleton automatically make a task easier? How can technology that augments bodys hinder when trying to help? How can we keep our head safer during a collision. Countless people rely on bicycles for safe and green transport, but how do we make it safer? Bicycle helmets are a simple tool for helping save lives, but can they be made even safer with new materials?
- Yibo Zhu, Eric B. Weston, Ranjana K. Mehta, William S. Marras. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions. Applied Ergonomics, 2021; 96: 103494 DOI: 10.1016/j.apergo.2021.103494
- Karl A Zimmerman, Etienne Laverse, Ravjeet Samra, Maria Yanez Lopez, Amy E Jolly, Niall J Bourke, Neil S N Graham, Maneesh C Patel, John Hardy, Simon Kemp, Huw R Morris, David J Sharp. White matter abnormalities in active elite adult rugby players. Brain Communications, 2021; 3 (3) DOI: 10.1093/braincomms/fcab133

Monday Jul 19, 2021
Episode 440 - Turning off plants with a switch of a light
Monday Jul 19, 2021
Monday Jul 19, 2021
Turning off plants with a switch of a light. How can optogenetics be used to turn off photosynthesis. Stomata cells help a plant from feasting too much in times of famine. Stomata cells regulate how much photosynthesis plants undertake, but can they be regulated with light? How can Yeast be used to help plants fight back against fungus. Fungal infections can devastate crops and plants, but can we avoid dangerous fungicides? How can we protect plants from, fungi without damaging the environment? Can yeast grown proteins help stop fungal infections without killing all fungi?
- Tiffany Chiu, Anita Behari, Justin W. Chartron, Alexander Putman, Yanran Li. Exploring the potential of engineering polygalacturonase‐inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnology and Bioengineering, 2021; DOI: 10.1002/bit.27845
- Shouguang Huang, Meiqi Ding, M. Rob G. Roelfsema, Ingo Dreyer, Sönke Scherzer, Khaled A. S. Al-Rasheid, Shiqiang Gao, Georg Nagel, Rainer Hedrich, Kai R. Konrad. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1. Science Advances, 2021; 7 (28): eabg4619 DOI: 10.1126/sciadv.abg4619

Monday Jun 07, 2021
Episode 434 - Parasites and Symbiotic relationships
Monday Jun 07, 2021
Monday Jun 07, 2021
Insects and plants are locked into an arms race until something breaks the stalemate. How can a tag team attack of bacteria and insect larvae help crush through a leaf's defenses? WOrkign together as a team, larvae and bacteria can make a tasty meal out of a leaf. Plants can fight back against insets, so insects need to call out for help. A parasitic infection is bad for the host, but some ants gain an odd boost. How are tapeworms boosting the life expectancy of ants? When an ant gets infected with parasites, it's colony mates care for it boosting it's lifespan.
- Yukiyo Yamasaki, Hiroka Sumioka, Mayu Takiguchi, Takuya Uemura, Yuka Kihara, Tomonori Shinya, Ivan Galis, Gen‐ichiro Arimura. Phytohormone‐dependent plant defense signaling orchestrated by oral bacteria of the herbivore Spodoptera litura. New Phytologist, 2021; DOI: 10.1111/nph.17444
- Sara Beros, Anna Lenhart, Inon Scharf, Matteo Antoine Negroni, Florian Menzel, Susanne Foitzik. Extreme lifespan extension in tapeworm-infected ant workers. Royal Society Open Science, 2021; 8 (5): 202118 DOI: 10.1098/rsos.202118

Monday May 31, 2021
Episode 433 - Prioritizing memories and filtering noise
Monday May 31, 2021
Monday May 31, 2021
How does your brain decide what's important to remember? You're constantly bombarded with info so how does your brain filter it all? Do memories change over time? Do certain details stand out more in our memories over time? What details can get lost in our memories over time? How does you brain know if it's worth 'saving' that picture you've seen. How does your brain filter out and only store the important stuff.
- Julia Lifanov, Juan Linde-Domingo, Maria Wimber. Feature-specific reaction times reveal a semanticisation of memories over time and with repeated remembering. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-23288-5
- Vahid Mehrpour, Travis Meyer, Eero P. Simoncelli, Nicole C. Rust. Pinpointing the neural signatures of single-exposure visual recognition memory. Proceedings of the National Academy of Sciences, 2021; 118 (18): e2021660118 DOI: 10.1073/pnas.2021660118

Monday Apr 19, 2021
Episode 427 - RNA protecting your brain
Monday Apr 19, 2021
Monday Apr 19, 2021
How does RNA work to protect your brain and keep it safe after a traumatic event? Micro RNA can play an important role in healthy brain development. Without key micro RNA, the development of the brain can run out of control. Without key microRNA, your can develop neurodevelopmental disorders. Without oxygen your neurons starve, so how can you protect them? How can you use mRNA to make neurons more resilient and recover after a lack of oxygen? Getting proteins across the blood brain barrier is tricky, so can they be snuck in via mRNA? Using mRNA, you can produce proteins to add brain recovery right where they're needed most.
Reference:
- Vijay Swahari, Ayumi Nakamura, Emilie Hollville, Hume Stroud, Jeremy M. Simon, Travis S. Ptacek, Matthew V. Beck, Cornelius Flowers, Jiami Guo, Charlotte Plestant, Jie Liang, C. Lisa Kurtz, Matt Kanke, Scott M. Hammond, You-Wen He, E.S. Anton, Praveen Sethupathy, Sheryl S. Moy, Michael E. Greenberg, Mohanish Deshmukh. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Reports, 2021; 35 (1): 108946 DOI: 10.1016/j.celrep.2021.108946
- Merlin Crossley,Dean of Science and Professor of Molecular Biology. (2021, April 09). Explainer: What is rna? Retrieved April 13, 2021, from https://theconversation.com/explainer-what-is-rna-15169
- Yuta Fukushima, Satoshi Uchida, Hideaki Imai, Hirofumi Nakatomi, Kazunori Kataoka, Nobuhito Saito, Keiji Itaka. Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelle. Biomaterials, 2021; 270: 120681 DOI: 10.1016/j.biomaterials.2021.120681

Monday Mar 22, 2021
Episode 423 - Humans vs Bacteria on earth and in space
Monday Mar 22, 2021
Monday Mar 22, 2021
Space is hard, things are different there which means something simple as salmonella becomes much more challenging. The rules of bacterial infection and response change once you're in space. How does your body respond to bacterial infection in microgravity environments? Getting sick in space may be worse than on earth. The human microbiome is incredible diverse and not well understood. Your gut contains 100,000s of bacteria groups, virus and other things. A large global study of gut microbiome has revealed thousands of new virus and bacteria types.
- Jennifer Barrila, Shameema F. Sarker, Nicole Hansmeier, Shanshan Yang, Kristina Buss, Natalia Briones, Jin Park, Richard R. Davis, Rebecca J. Forsyth, C. Mark Ott, Kevin Sato, Cristine Kosnik, Anthony Yang, Cheryl Shimoda, Nicole Rayl, Diana Ly, Aaron Landenberger, Stephanie D. Wilson, Naoko Yamazaki, Jason Steel, Camila Montano, Rolf U. Halden, Tom Cannon, Sarah L. Castro-Wallace, Cheryl A. Nickerson. Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. npj Microgravity, 2021; 7 (1) DOI: 10.1038/s41526-021-00136-w
- Luis F. Camarillo-Guerrero, Alexandre Almeida, Guillermo Rangel-Pineros, Robert D. Finn, Trevor D. Lawley. Massive expansion of human gut bacteriophage diversity. Cell, 2021; 184 (4): 1098 DOI: 10.1016/j.cell.2021.01.029

Monday Feb 01, 2021
Episode 416 - Sourdough starters and less allergens in wheat and peanuts
Monday Feb 01, 2021
Monday Feb 01, 2021
Sourdough baking has rising to become a global hobby, but how diverse are they? Each sourdough starter is a tiny ecosystem, and a global study shows how diverse they are. Scientists analysed 500 sourdough from across the world to find out what makes the best loaf. Baking is about carefully cultivating a microbiome. What can be done to make wheat and peanuts less dangerous for people with allergies? Can you make wheat and peanuts that are better for allergies?
- Elizabeth A Landis, Angela M Oliverio, Erin A McKenney, Lauren M Nichols, Nicole Kfoury, Megan Biango-Daniels, Leonora K Shell, Anne A Madden, Lori Shapiro, Shravya Sakunala, Kinsey Drake, Albert Robbat, Matthew Booker, Robert R Dunn, Noah Fierer, Benjamin E Wolfe. The diversity and function of sourdough starter microbiomes. eLife, 2021; 10 DOI: 10.7554/eLife.61644
- American Society of Agronomy. (2021, January 27). Making wheat and peanuts less allergenic. ScienceDaily. Retrieved January 30, 2021 from www.sciencedaily.com/releases/2021/01/210127085239.htm

Monday Jan 11, 2021
Episode 413 - Detecting gene doping in sport, and the strange air of gyms
Monday Jan 11, 2021
Monday Jan 11, 2021
You've probably heard of CRISPR, but what does it mean for the world of professional sports? How could gene-doping be detected by sports administrators? Could you tell if someone had used CRISPR to 'dope' their performance? WADA considers gene editing a form of doping, but how can you detect it? What happens when you mix sweat, gym equipment and cleaning products? When you exercise you release a 3-5 times the amount of chemicals than a sedentary person. What happens to the mix of sweat, amino acids and cleaning products in the air of a gym?
- Alina Paßreiter, Andreas Thomas, Nicolas Grogna, Philippe Delahaut, Mario Thevis. First Steps toward Uncovering Gene Doping with CRISPR/Cas by Identifying SpCas9 in Plasma via HPLC–HRMS/MS. Analytical Chemistry, 2020; 92 (24): 16322 DOI: 10.1021/acs.analchem.0c04445
- Zachary Finewax, Demetrios Pagonis, Megan S. Claflin, Anne V. Handschy, Wyatt L. Brown, Olivia Jenks, Benjamin A. Nault, Douglas A. Day, Brian M. Lerner, Jose L. Jimenez, Paul J. Ziemann, Joost A. Gouw. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine‐based cleaning products in a university athletic center. Indoor Air, 2020; DOI: 10.1111/ina.12781

Monday Dec 28, 2020
Episode 411 - Lightning fast eyes and looking for hidden spots
Monday Dec 28, 2020
Monday Dec 28, 2020
How do our eyes process the continually barrage of photos so efficiently? What happens in our eyes that enables us to respond so quickly to stimulus like light or signs of danger? Why do zebra-fish swim towards the light so quickly? How does your brain process and map a room? Does the way your brain processes a space change when you're searching for something rather than exploring?
References:
- Matthias Stangl, Uros Topalovic, Cory S. Inman, Sonja Hiller, Diane Villaroman, Zahra M. Aghajan, Leonardo Christov-Moore, Nicholas R. Hasulak, Vikram R. Rao, Casey H. Halpern, Dawn Eliashiv, Itzhak Fried, Nanthia Suthana. Boundary-anchored neural mechanisms of location-encoding for self and others. Nature, 2020; DOI: 10.1038/s41586-020-03073-y
- Yvonne Kölsch, Joshua Hahn, Anna Sappington, Manuel Stemmer, António M. Fernandes, Thomas O. Helmbrecht, Shriya Lele, Salwan Butrus, Eva Laurell, Irene Arnold-Ammer, Karthik Shekhar, Joshua R. Sanes, Herwig Baier. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron, 2020; DOI: 10.1016/j.neuron.2020.12.003

Monday Oct 12, 2020
Episode 400 - Nobel Prizes, Collaboration, and more sustainable trees
Monday Oct 12, 2020
Monday Oct 12, 2020
The Nobel Prize's legacy on gender and diversity is poor, but are they turning it around? We celebrate the winners of the Nobel Prize, but look critically at the challenges of the system. How do you recognize the collaboration of 100s or 1000s of people with a single award? Is science advanced through singular genius or the collaboration of many? How can CRISPR help us create a more sustainable planet? Growing trees that are easier to process but still able to thrive is possible with CRISPR. How can making trees with less lignin help make a greener planet?
- Advanced information. NobelPrize.org. Nobel Media AB 2020. Sat. 10 Oct 2020.
- Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme, Wout Boerjan. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18822-w

Monday Sep 14, 2020
Episode 396 - Is that food safe to eat
Monday Sep 14, 2020
Monday Sep 14, 2020
Is that food safe to eat? How can you tell if food has gone bad beyond just reading a date? Ever been confused by best before or use by? A new type of label could make it a mater of colors. Color based labels could help detect if your food has gone bad or is contaminated by bacteria. How can we study the microbes that live inside our intestines? The gut microbiome is incredibly fascinating but difficult to study without damaging it. A tiny pill that takes snapshots of micro organisms inside your stomach as it passes through.
- Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply Chain. Advanced Functional Materials, 2020 DOI: 10.1002/adfm.202005370
- Lu Chen, Lina Gruzinskyte, Steffen Lynge Jørgensen, Anja Boisen, Sarvesh Kumar Srivastava. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and Biomarkers. ACS Nano, 2020; DOI: 10.1021/acsnano.0c05426

Monday Aug 17, 2020
Episode 392 - How brains process and overload of information
Monday Aug 17, 2020
Monday Aug 17, 2020
Your senses bombard your brain with an overload of information, so how does it process it all? How does y our brain decide what information to focus on? The brain can focus voluntarily or involuntarily on regions of an image to best process it. How does your brain decide which parts of an image to focus on? What part of your brain helps gatekeep the waves of sensory input before it gets processed? How can your brain help regulate and manage an overload of sensory inputs.
- Antonio Fernández, Marisa Carrasco. Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation. Current Biology, 2020; DOI: 10.1016/j.cub.2020.07.068
- Yinqing Li, Violeta G. Lopez-Huerta, Xian Adiconis, Kirsten Levandowski, Soonwook Choi, Sean K. Simmons, Mario A. Arias-Garcia, Baolin Guo, Annie Y. Yao, Timothy R. Blosser, Ralf D. Wimmer, Tomomi Aida, Alexander Atamian, Tina Naik, Xuyun Sun, Dasheng Bi, Diya Malhotra, Cynthia C. Hession, Reut Shema, Marcos Gomes, Taibo Li, Eunjin Hwang, Alexandra Krol, Monika Kowalczyk, João Peça, Gang Pan, Michael M. Halassa, Joshua Z. Levin, Zhanyan Fu, Guoping Feng. Distinct subnetworks of the thalamic reticular nucleus. Nature, 2020; DOI: 10.1038/s41586-020-2504-5