Loading Downloads
3Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

January 20, 2020

Episode 362 - Life after a disaster from Fukashima to Chernobyl

What happens next after disaster strikes and people flee for safety? How do wildlife move in when people move out of a disaster zone? How do animals moving into an evacuated area change with no humans around? What is the most effective thing to do if you live near a disaster area? How do we assess risk and life expectancy impact of living near a disaster zone? Is it more dangerous to live near a nuclear plant or in the diesel smog of the big city?

  1. Phillip C Lyons, Kei Okuda, Matthew T Hamilton, Thomas G Hinton, James C Beasley. Rewilding of Fukushima's human evacuation zoneFrontiers in Ecology and the Environment, 2020; DOI: 10.1002/fee.2149
  2. Philip Thomas, John May. Coping after a big nuclear accidentProcess Safety and Environmental Protection, 2017; 112: 1 DOI: 10.1016/j.psep.2017.09.013
January 13, 2020

Episode 361 - Fast Radio Bursts, Cosmic Rays and Antarctica

From Fast Radio Bursts to Cosmic rays, interstellar mystery solving is a team effort. Mysterious repeating signals from space are tricky to localize, like spotting a person on the moon from here on Earth. What can fast radio bursts from billions of light years away tell us about the nature of the universe? How do you hunt for the source of a mysterious radio burst billions of light years away? How does a tiger, a balloon and Antarctica help us understand Supernova? What's the best place to hunt for cosmic rays; floating above Antarctica with a Super Tiger.

  1. B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, Z. Paragi, A. Keimpema, M. Bhardwaj, R. Karuppusamy, V. M. Kaspi, C. J. Law, D. Michilli, K. Aggarwal, B. Andersen, A. M. Archibald, K. Bandura, G. C. Bower, P. J. Boyle, C. Brar, S. Burke-Spolaor, B. J. Butler, T. Cassanelli, P. Chawla, P. Demorest, M. Dobbs, E. Fonseca, U. Giri, D. C. Good, K. Gourdji, A. Josephy, A. Yu. Kirichenko, F. Kirsten, T. L. Landecker, D. Lang, T. J. W. Lazio, D. Z. Li, H.-H. Lin, J. D. Linford, K. Masui, J. Mena-Parra, A. Naidu, C. Ng, C. Patel, U.-L. Pen, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, A. Renard, P. Scholz, S. R. Siegel, K. M. Smith, I. H. Stairs, K. Vanderlinde, A. V. Zwaniga. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020; DOI: 10.1038/s41586-019-1866-z
  2. Ogliore, T. (2020, January 10). SuperTIGER on its second prowl -- 130,000 feet above Antarctica: The Source: Washington University in St. Louis. Retrieved from https://source.wustl.edu/2020/01/supertiger-on-its-second-prowl-130000-feet-above-antarctica/.
January 6, 2020

Episode 360 - Imaging hard-working Cells keeping you alive during illness

How do we peer into the inner workings of our cells, especially during their response to a medical emergency? What role does fibroblasts play to protect your heart after a heart attack? When is your body hardest at work repairing damage after a heart attack? What stem cells control your blood cells? How can we get a picture of the complex 3D shape of blood stem cells in your bone marrow? What role does bone marrow play in blood regulation?
References:

  1. Chiara Baccin, Jude Al-Sabah, Lars Velten, Patrick M. Helbling, Florian Grünschläger, Pablo Hernández-Malmierca, César Nombela-Arrieta, Lars M. Steinmetz, Andreas Trumpp, Simon Haas. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organizationNature Cell Biology, 2019; DOI: 10.1038/s41556-019-0439-6
  2. Zohreh Varasteh, Sarajo Mohanta, Stephanie Robu, Miriam Braeuer, Yuanfang Li, Negar Omidvari, Geoffrey Topping, Ting Sun, Stephan G. Nekolla, Antonia Richter, Christian Weber, Andreas Habenicht, Uwe A. Haberkorn, Wolfgang A. Weber. Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a 68Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04Journal of Nuclear Medicine, 2019; 60 (12): 1743 DOI: 10.2967/jnumed.119.226993
December 30, 2019

Episode 359 - Life surviving on freezing planets, faint suns and meteorites

What can bacteria from an iron ore rich lake tell us about life on early earth? Have scientists finally solved a Carl Sagan paradox about life on early earth? When the earth was young, so was the sun, and that meant less light and heat. How did early life on earth survive if there was not enough sunlight to keep it warm? How did iron ore eating and secreting bacteria help lead to widespread life on our planet? How did micro organisms get enough oxygen to survive when the entire planet was frozen over? What can iron ore deposits tell us about life surviving when the entire planet was frozen over? Can life survive on a meteorite, the answer is surprising. How can a microbe be more suited to life on a meteorite than on earth?

  1. Katharine J. Thompson, Paul A. Kenward, Kohen W. Bauer, Tyler Warchola, Tina Gauger, Raul Martinez, Rachel L. Simister, Céline C. Michiels, Marc Llirós, Christopher T. Reinhard, Andreas Kappler, Kurt O. Konhauser, Sean A. Crowe. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceansScience Advances, 2019; 5 (11): eaav2869 DOI: 10.1126/sciadv.aav2869
  2. Maxwell A. Lechte, Malcolm W. Wallace, Ashleigh van Smeerdijk Hood, Weiqiang Li, Ganqing Jiang, Galen P. Halverson, Dan Asael, Stephanie L. McColl, Noah J. Planavsky. Subglacial meltwater supported aerobic marine habitats during Snowball EarthProceedings of the National Academy of Sciences, 2019; 201909165 DOI: 10.1073/pnas.1909165116
  3. Tetyana Milojevic, Denise Kölbl, Ludovic Ferrière, Mihaela Albu, Adrienne Kish, Roberta L. Flemming, Christian Koeberl, Amir Blazevic, Ziga Zebec, Simon K.-M. R. Rittmann, Christa Schleper, Marc Pignitter, Veronika Somoza, Mario P. Schimak, Alexandra N. Rupert. Exploring the microbial biotransformation of extraterrestrial material on nanometer scaleScientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-54482-7
December 23, 2019

Episode 358 - Wildfires, climate change, smog and charcoal

As the climate changes, wildfires become more common and more dangerous. Smoke clouds from wildfires can linger for weeks, but what chemistry changes inside the smog? Aerosols amongst other particles lurk inside wildfire smoke. How do we study the changes in wildfire smoke; by flying planes through the plumes. How do wildfires impact the CO2 emissions of a region?  Can wildfires help store carbon through charcoal? What can charred biomass to do help capture carbon?

  1. Kouji Adachi, Arthur J. Sedlacek, Lawrence Kleinman, Stephen R. Springston, Jian Wang, Duli Chand, John M. Hubbe, John E. Shilling, Timothy B. Onasch, Takeshi Kinase, Kohei Sakata, Yoshio Takahashi, Peter R. Buseck. Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smokeProceedings of the National Academy of Sciences, 2019; 201900129 DOI: 10.1073/pnas.1900129116
  2. Matthew W. Jones, Cristina Santín, Guido R. van der Werf, Stefan H. Doerr. Global fire emissions buffered by the production of pyrogenic carbonNature Geoscience, 2019; DOI: 10.1038/s41561-019-0403-x
December 16, 2019

Episode 357 - Microbiology vs Macro climate challenges

Scientist are turning to microbiology to fight global climate challenges. How do you change a microbe from consumer to producer? Can you teach old e-coli new tricks, and make it consume CO2? How can a gut bacteria start to behave like a plant? Can we use enzymes to produce Hydrogen gas efficiently? What is the missing step in hydrogen fuel cell production? Can synthesised enzyme engines help us produce hydrogen without complex processes?

References:

  1.   Gleizer et al. Conversion of Escherichia coli to Generate All Biomass Carbon from CO2Cell, 2019 DOI: 10.1016/j.cell.2019.11.009
  2. The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO)2(CN)] organometallic precursorProceedings of the National Academy of Sciences, 2019; 116 (42): 20850 DOI: 10.1073/pnas.1913324116
     

 

December 9, 2019

Episode 356 - Responding to signs of danger

How do animals communicate information about danger? When a threat is detected by one animal, how do they pass it along to others? Does empathy play a role in how a create responds to a threat? Does the reaction of others around you change your response to threats? What chemical causes you to freeze in response to danger? How does serotonin cause deer in the headlights moments? What's the link between serotonin and slowing down in response to danger?

  1. Yingying Han, Rune Bruls, Efe Soyman, Rajat Mani Thomas, Vasiliki Pentaraki, Naomi Jelinek, Mirjam Heinemans, Iege Bassez, Sam Verschooren, Illanah Pruis, Thijs Van Lierde, Nathaly Carrillo, Valeria Gazzola, Maria Carrillo, Christian Keysers. Bidirectional cingulate-dependent danger information transfer across ratsPLOS Biology, 2019; 17 (12): e3000524 DOI: 10.1371/journal.pbio.3000524
  2. Clare E. Howard, Chin-Lin Chen, Tanya Tabachnik, Rick Hormigo, Pavan Ramdya, Richard S. Mann. Serotonergic Modulation of Walking in DrosophilaCurrent Biology, 2019; DOI: 10.1016/j.cub.2019.10.042
December 2, 2019

Episode 355 - Satellites keeping us safe on the ground

Satellites can help save lives down on earth, by helping us better respond in disasters. When a flood, tsunami or other disaster strikes, satellites can help emergency responders get where they need to be as fast as possible. Satellites can track floods in near real time and help shave minutes of disaster response times. Finding your way in a flood or fire can be tricky, but satellites can help direct emergency responders. Satellites can help track critical infrastructure like bridges or roads as they age. When a bridge fails it can be a tragedy, but satellites can help give an early warning. When we dig big tunnels we can disturb structures and buildings, so how can we use satellites to avoid a disaster.

References:

  1. Perry C. Oddo, John D. Bolten. The Value of Near Real-Time Earth Observations for Improved Flood Disaster ResponseFrontiers in Environmental Science, 2019; 7 DOI: 10.3389/fenvs.2019.00127
  2. Pietro Milillo, Giorgia Giardina, Daniele Perissin, Giovanni Milillo, Alessandro Coletta, Carlo Terranova. Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, ItalyRemote Sensing, 2019; 11 (12): 1403 DOI: 10.3390/rs11121403
November 25, 2019

Episode 354 - Safer pacemakers and mini machines inside our cells

Our bodies are filled with molecular and cellular machines, pumping, spinning and moving. How do tiny single molecules pump sodium ions across a cell? What is the connection between a single molecule pump and cells producing electricity? How can a single molecule pump be more efficient than our modern ones? How do we make pacemakers safer? Overtime a pacemaker grows to become part of the heart fibre. How do we make pacemakers less likely to be overgrown and easier to replace? 

References: 

  1. Tatsuya Iida, Yoshihiro Minagawa, Hiroshi Ueno, Fumihiro Kawai, Takeshi Murata, Ryota Iino. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V1-ATPaseJournal of Biological Chemistry, 2019; 294 (45): 17017 DOI: 10.1074/jbc.RA119.008947
  2. Francesco Robotti, Ita Sterner, Simone Bottan, Josep M. Monné Rodríguez, Giovanni Pellegrini, Tanja Schmidt, Volkmar Falk, Dimos Poulikakos, Aldo Ferrari, Christoph Starck. Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devicesBiomaterials, 2020; 229: 119583 DOI: 10.1016/j.biomaterials.2019.119583
November 18, 2019

Episode 353 - Mysteries of plants, from using rare metals to boosting photosynthesis

Plants play an important role in our environment, yet there is still so much more to understand. We often think of nature as a zero sum game, but older and younger plants can collaborate. When surviving in a harsh environment, the best results occur when old and young plants grow together. Photosynthesis seems simple, but understanding the intricacies of the mechanisms can help us boost crop yields. Regulating the amount of photosynthesis can help plants survive or thrive in changing climates. How do boreal forests help capture nitrogen from the air? What does an odd metal have to do with forests in Canada storing nitrogen? 

  1. Alicia Montesinos-Navarro, Isabelle Storer, Rocío Perez-Barrales. Benefits for nurse and facilitated plants emerge when interactions are considered along the entire life-spanPerspectives in Plant Ecology, Evolution and Systematics, 2019; 41: 125483 DOI: 10.1016/j.ppees.2019.125483
  2. Lorna A. Malone, Pu Qian, Guy E. Mayneord, Andrew Hitchcock, David A. Farmer, Rebecca F. Thompson, David J. K. Swainsbury, Neil A. Ranson, C. Neil Hunter, Matthew P. Johnson. Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolutionNature, 2019; DOI: 10.1038/s41586-019-1746-6
  3. Princeton University. (2019, November 11). Nature's backup plan for converting nitrogen into plant nutrients. ScienceDaily. Retrieved November 15, 2019 from www.sciencedaily.com/releases/2019/11/191111180100.htm
November 11, 2019

Episode 352 - Figuring out where sound comes from and perceiving pitch

This week we look at the way our brains process sound, music, pitch and rhythm. How does our brain figure out where a sound is coming from? Do our eyes and ears process distance and location in a similar way? How does our brain discern differences in stimuli? What can we learn about pitch and rhythm from studying a remote Bolivian tribe? Is there a biological limit to our perception of sounds? Is our ability to perceive rhythm, chords and pitch cultural or biological?

References:

  1. Antje Ihlefeld, Nima Alamatsaz, Robert M Shapley. Population rate-coding predicts correctly that human sound localization depends on sound intensityeLife, 2019; 8 DOI: 10.7554/eLife.47027
  2. Nori Jacoby, Eduardo A. Undurraga, Malinda J. McPherson, Joaquín Valdés, Tomás Ossandón, Josh H. McDermott. Universal and Non-universal Features of Musical Pitch Perception Revealed by SingingCurrent Biology, 2019; DOI: 10.1016/j.cub.2019.08.020
November 4, 2019

Episode 351 - A new dwarf planet and what makes an exoplanet habitable

What makes a dwarf planet not a planet? What are the rules governing the word planet? Just how many dwarf planets are out there in our solar system? How can we use telescopes and modelling to add or subtract a dwarf planet from that list? We've talked about Goldilocks zone exoplanets, but what about their ability to withstand space weather? What role does a star's magnetic field play in protecting a planet from damaging radiation? Does space weather need to be added to the exoplanet Goldilocks zone?

References:

  1. P. Vernazza, L. Jorda, P. Ševeček, M. Brož, M. Viikinkoski, J. Hanuš, B. Carry, A. Drouard, M. Ferrais, M. Marsset, F. Marchis, M. Birlan, E. Podlewska-Gaca, E. Jehin, P. Bartczak, G. Dudzinski, J. Berthier, J. Castillo-Rogez, F. Cipriani, F. Colas, F. DeMeo, C. Dumas, J. Durech, R. Fetick, T. Fusco, J. Grice, M. Kaasalainen, A. Kryszczynska, P. Lamy, H. Le Coroller, A. Marciniak, T. Michalowski, P. Michel, N. Rambaux, T. Santana-Ros, P. Tanga, F. Vachier, A. Vigan, O. Witasse, B. Yang, M. Gillon, Z. Benkhaldoun, R. Szakats, R. Hirsch, R. Duffard, A. Chapman, J. L. Maestre. A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 2019; DOI: 10.1038/s41550-019-0915-8
  2. Alison O. Farrish, David Alexander, Mei Maruo, Marc DeRosa, Frank Toffoletto, Anthony M. Sciola. Characterizing the Magnetic Environment of Exoplanet Stellar Systems. The Astrophysical Journal, 2019; 885 (1): 51 DOI: 10.3847/1538-4357/ab4652
October 28, 2019

Episode 350 - Developing, tracking, recycling new materials

Smart phones, computers, televisions and even children's toys are part of what makes our modern world so exciting. But these often rely on plastics and rare earth metals which are hard to recycle. Are there efficient ways to capture all those rare earth metals? How are rare earth metals in old phones recycled today, and can we make it better? Knowing which bin to put plastic in is difficult, so what if there was a more universal way to recycle plastics? How does turning plastic into a gas with the help of steam help create a circular plastic economy? How can some steam power help crack plastics back into their most basic forms? Is it possible to recycle plastics without to build whole new plastic refineries? Regulation is often playing catch up to making materials safe. Are the latest generation of 'safe' fire retardants any safer than those that came before? 

 

References:

Robert F. Higgins, Thibault Cheisson, Bren E. Cole, Brian C. Manor, Patrick J. Carroll, Eric J Schelter. Magnetic Field Directed Rare-Earth Separations. Angewandte Chemie International Edition, 2019; DOI: 10.1002/anie.201911606

Arlene Blum, Mamta Behl, Linda S. Birnbaum, Miriam L. Diamond, Allison Phillips, Veena Singla, Nisha S. Sipes, Heather M. Stapleton, Marta Venier. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environmental Science & Technology Letters, 2019; DOI: 10.1021/acs.estlett.9b00582

Henrik Thunman, Teresa Berdugo Vilches, Martin Seemann, Jelena Maric, Isabel Cañete Vela, Sébastien Pissot, Huong N.T. Nguyen. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies, 2019; 22: e00124 DOI: 10.1016/j.susmat.2019.e00124

October 21, 2019

Episode 349 - Domesticating fungus for our food

Humans have been using micro-organisms like fungus and bacteria to help improve our food for millennia. Can we tame new wild species of fungus to help create new types of our favourite foods like cheese? Penicillin is mostly known for antibiotics but it also helps give Camembert its particular taste. What causes cheese to rapidly tame wild strains of fungus? We are not the only ones who use microbes to help our food. Ants help stop disease from destroying plants by spreading their own antibiotics. Ant base antibiotics help stop plant pathogens. Sometimes bacteria don't fight against each other but rather team up and work together. Survival of kindest rules for bacteria, which helps different strains work together to survive.

References:

  1. Bodinaku, I., Shaffer, J., Connors, A. B., Steenwyk, J. L., Biango-Daniels, M. N., Kastman, E. K., … Wolfe, B. E. (2019). Rapid Phenotypic and Metabolomic Domestication of Wild Penicillium Molds on Cheese. MBio, 10(5). doi: 10.1128/mbio.02445-19
  2. Joachim Offenberg, Christian Damgaard. Ants suppressing plant pathogens: a review. Oikos, 2019; DOI: 10.1111/oik.06744
  3. Wenzheng Liu, Samuel Jacquiod, Asker Brejnrod, Jakob Russel, Mette Burmølle, Søren J. Sørensen. Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. The ISME Journal, 2019; DOI: 10.1038/s41396-019-0494-9
October 14, 2019

Episode 348 - More efficient Lithium-Ion batteries and Organic Batteries

We launch from the Nobel Prize for Chemistry 2019 into current battery research and development. Creating the ubiquitous Lithium Ion battery took decades of collaborative research across the globe. How are scientists working together today to make the new generation of batteries? Can we improve LI batteries with new electrolyte mixes? How can we use Silicon instead of graphite in our batteries to give them a boost? Is it possible to make an organic recyclable battery? How can we use proteins and peptides to make organic batteries? Can we make batteries without damaging the environment?

References:

  1. Nobel Foundation. (2019, October 9). Nobel Prize in Chemistry 2019: Lithium-ion batteries. ScienceDaily. Retrieved October 11, 2019 from www.sciencedaily.com/releases/2019/10/191009082508.htm
  2. Binghong Han, Chen Liao, Fulya Dogan, Stephen E. Trask, Saul H. Lapidus, John T. Vaughey, Baris Key. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca)ACS Applied Materials & Interfaces, 2019; 11 (33): 29780 DOI: 10.1021/acsami.9b07270
  3. American Chemical Society. (2019, August 26). Producing protein batteries for safer, environmentally friendly power storage. ScienceDaily. Retrieved October 12, 2019 from www.sciencedaily.com/releases/2019/08/190826092322.htm5
October 7, 2019

Episode 347 - Capturing carbon with better farms and forests

Capturing carbon is important for helping offset CO2 emissions and tackling climate changes. Farming has an important role to play in improving CO2 sequestration with the use of cover crops and compost. Forests are important carbon sinks too, but they are at risk releasing a lot of the trapped carbon if care is not taken to stop invasive species. Plus fertilisers have helped feed the planet but can leech out nitrogen into the environment, so how do we better manage and improve the nitrogen cycle.

  1. Nicole E. Tautges, Jessica L. Chiartas, Amélie C. M. Gaudin, Anthony T. O'Geen, Israel Herrera, Kate M. Scow. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soilsGlobal Change Biology, 2019; DOI: 10.1111/gcb.14762
  2. Songlin Fei, Randall S. Morin, Christopher M. Oswalt, Andrew M. Liebhold. Biomass losses resulting from insect and disease invasions in US forestsProceedings of the National Academy of Sciences, 2019; 201820601 DOI: 10.1073/pnas.1820601116
  3. Benjamin Z. Houlton, Maya Almaraz, Viney Aneja, Amy T. Austin, Edith Bai, Kenneth G. Cassman, Jana E. Compton, Eric A. Davidson, Jan Willem Erisman, James N. Galloway, Baojing Gu, Guolin Yao, Luiz A. Martinelli, Kate Scow, William H. Schlesinger, Thomas P. Tomich, Chao Wang, Xin Zhang. A World of Cobenefits: Solving the Global Nitrogen ChallengeEarth's Future, 2019; DOI: 10.1029/2019EF001222
September 30, 2019

Episode 346 - Can washing machines help stop microplastics in oceans and make hospitals safer

Washing machines can save a lot of time and help clean up mess, but they can also harm our health and environment. Which washing process is better for the environment - full an fast or empty and delicate? How do washing machines help fill our oceans with microplastics? What can be done to help stop washing machines contributing to the microplastics in our waterways? Which washing setting is best for your health? Cold and clean or warm and soapy? How did a normal washing machine cause havoc in a hospital? How can you multi-drug resistant pathogens spread through a washing machine? 

References:

  1. American Society for Microbiology. (2019, September 27). Your energy-efficient washing machine could be harboring pathogens: Lower temperatures used in 'energy saver' washing machines may not be killing all pathogens. ScienceDaily. Retrieved September 29, 2019 from www.sciencedaily.com/releases/2019/09/190927135202.htm
  2. Max R. Kelly, Neil J. Lant, Martyn Kurr, J. Grant Burgess. Importance of Water-Volume on the Release of Microplastic Fibers from LaundryEnvironmental Science & Technology, 2019; DOI: 10.1021/acs.est.9b03022
September 23, 2019

Episode 345 - Overactive immune brain cells and brain cells failing to eat themselves

Is it possible to stop Alzheimer's in it's tracks? How does the formation of plaques on your brain cells lead to Alzheimer's. Does the your brain immune cells fighting back against plaques lead to Alzheimers? Amino acids in the brain tying themselves into knots, can lead to super strong sealed zippers forming which dry out proteins, damage neurons and eventually can lead to diseases like Alzheimer's. An enzyme missing a repair or two over 60 years can lead to build up of kinked amino acids chains which can lead to neuron-degenerative diseases. What causes a cell to eat itself? Well its actually a pretty healthy thing to do. If a brain cell doesn't eat itself at the right time, well it can lead to a whole bunch of diseases.

  1. Rebeccah A. Warmack, David R. Boyer, Chih-Te Zee, Logan S. Richards, Michael R. Sawaya, Duilio Cascio, Tamir Gonen, David S. Eisenberg, Steven G. Clarke. Structure of amyloid-β (20-34) with Alzheimer’s-associated isomerization at Asp23 reveals a distinct protofilament interfaceNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11183-z
  2. Elizabeth Spangenberg, Paul L. Severson, Lindsay A. Hohsfield, Joshua Crapser, Jiazhong Zhang, Elizabeth A. Burton, Ying Zhang, Wayne Spevak, Jack Lin, Nicole Y. Phan, Gaston Habets, Andrey Rymar, Garson Tsang, Jason Walters, Marika Nespi, Parmveer Singh, Stephanie Broome, Prabha Ibrahim, Chao Zhang, Gideon Bollag, Brian L. West, Kim N. Green. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease modelNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11674-z
  3. Yi Yang, Thea L. Willis, Robert W. Button, Conor J. Strang, Yuhua Fu, Xue Wen, Portia R. C. Grayson, Tracey Evans, Rebecca J. Sipthorpe, Sheridan L. Roberts, Bing Hu, Jianke Zhang, Boxun Lu, Shouqing Luo. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress responseNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11671-2
September 16, 2019

Episode 344 - Colliding galaxies, stellar foundires and the emptiness of space

We look at galactic events, where galaxies collide, stars form and emptiness of space. Space is so unfathomably huge, but its still possible for galaxies to collide. The Milky Way was formed through one of this violent collisions over 10 billion years ago. Space seems empty but there are sections of space that are emptier than others, the great Local Void around the Local group. Stars forming in galaxies rely on gas clouds, but what does it take to form a star? What do you need to really make a good nursery for stars?

  1. R. Brent Tully, Daniel Pomarède, Romain Graziani, Hélène M. Courtois, Yehuda Hoffman, Edward J. Shaya. Cosmicflows-3: Cosmography of the Local VoidThe Astrophysical Journal, 2019; 880 (1): 24 DOI: 10.3847/1538-4357/ab2597
  2. Kazufumi Torii, Shinji Fujita, Atsushi Nishimura, Kazuki Tokuda, Mikito Kohno, Kengo Tachihara, Shu-ichiro Inutsuka, Mitsuhiro Matsuo, Mika Kuriki, Yuya Tsuda, Tetsuhiro Minamidani, Tomofumi Umemoto, Nario Kuno, Yusuke Miyamoto. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). V. Dense gas mass fraction of molecular gas in the Galactic planePublications of the Astronomical Society of Japan, 2019; DOI: 10.1093/pasj/psz033
  3. Carme Gallart, Edouard J. Bernard, Chris B. Brook, Tomás Ruiz-Lara, Santi Cassisi, Vanessa Hill, Matteo Monelli. Uncovering the birth of the Milky Way through accurate stellar ages with GaiaNature Astronomy, 2019; DOI: 10.1038/s41550-019-0829-5
September 9, 2019

Episode 343 - The circadian rhythm of plants, and fighting back against fungus

Growing enough food to feed the planet is a challenge that will only get harder as the climate changes. So how do farmers and scientists work together to make crops more sustainable, more resilient to disease, and use less herbicides? With genetic engineering, one of the worlds most important crops, rice, can be made even tougher. Using a two type bait gene, rice can be engineered to fight off fungus like rice blast. If you have to spray with herbicides, when should you do it? Well you need to pay attention to the circadian rhythm of the plants.

  1. Freya A Varden, Hiromasa Saitoh, Kae Yoshino, Marina Franceschetti, Sophien Kamoun, Ryohei Terauchi, Mark J. Banfield. Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistanceJournal of Biological Chemistry, 2019; jbc.RA119.007730 DOI: 10.1074/jbc.RA119.007730
  2. Fiona E. Belbin, Gavin J. Hall, Amelia B. Jackson, Florence E. Schanschieff, George Archibald, Carl Formstone, Antony N. Dodd. Plant circadian rhythms regulate the effectiveness of a glyphosate-based herbicideNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11709-5