Loading Downloads
3Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

November 11, 2019

Episode 352 - Figuring out where sound comes from and perceiving pitch

This week we look at the way our brains process sound, music, pitch and rhythm. How does our brain figure out where a sound is coming from? Do our eyes and ears process distance and location in a similar way? How does our brain discern differences in stimuli? What can we learn about pitch and rhythm from studying a remote Bolivian tribe? Is there a biological limit to our perception of sounds? Is our ability to perceive rhythm, chords and pitch cultural or biological?

References:

  1. Antje Ihlefeld, Nima Alamatsaz, Robert M Shapley. Population rate-coding predicts correctly that human sound localization depends on sound intensityeLife, 2019; 8 DOI: 10.7554/eLife.47027
  2. Nori Jacoby, Eduardo A. Undurraga, Malinda J. McPherson, Joaquín Valdés, Tomás Ossandón, Josh H. McDermott. Universal and Non-universal Features of Musical Pitch Perception Revealed by SingingCurrent Biology, 2019; DOI: 10.1016/j.cub.2019.08.020
September 23, 2019

Episode 345 - Overactive immune brain cells and brain cells failing to eat themselves

Is it possible to stop Alzheimer's in it's tracks? How does the formation of plaques on your brain cells lead to Alzheimer's. Does the your brain immune cells fighting back against plaques lead to Alzheimers? Amino acids in the brain tying themselves into knots, can lead to super strong sealed zippers forming which dry out proteins, damage neurons and eventually can lead to diseases like Alzheimer's. An enzyme missing a repair or two over 60 years can lead to build up of kinked amino acids chains which can lead to neuron-degenerative diseases. What causes a cell to eat itself? Well its actually a pretty healthy thing to do. If a brain cell doesn't eat itself at the right time, well it can lead to a whole bunch of diseases.

  1. Rebeccah A. Warmack, David R. Boyer, Chih-Te Zee, Logan S. Richards, Michael R. Sawaya, Duilio Cascio, Tamir Gonen, David S. Eisenberg, Steven G. Clarke. Structure of amyloid-β (20-34) with Alzheimer’s-associated isomerization at Asp23 reveals a distinct protofilament interfaceNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11183-z
  2. Elizabeth Spangenberg, Paul L. Severson, Lindsay A. Hohsfield, Joshua Crapser, Jiazhong Zhang, Elizabeth A. Burton, Ying Zhang, Wayne Spevak, Jack Lin, Nicole Y. Phan, Gaston Habets, Andrey Rymar, Garson Tsang, Jason Walters, Marika Nespi, Parmveer Singh, Stephanie Broome, Prabha Ibrahim, Chao Zhang, Gideon Bollag, Brian L. West, Kim N. Green. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease modelNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11674-z
  3. Yi Yang, Thea L. Willis, Robert W. Button, Conor J. Strang, Yuhua Fu, Xue Wen, Portia R. C. Grayson, Tracey Evans, Rebecca J. Sipthorpe, Sheridan L. Roberts, Bing Hu, Jianke Zhang, Boxun Lu, Shouqing Luo. Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress responseNature Communications, 2019; 10 (1) DOI: 10.1038/s41467-019-11671-2
August 26, 2019

Episode 341 - Forming, Saving and preserving new memories

Your brain uses proteins synthesis and redundancy to help form and keep memories. Intricate biochemistry helps your neurons connect to each other to form new memories. Forming new memories is a sticky situation.  Keeping them stuck together over time in a long lasting memory relies on protein synthesis. Its important not just to have strong connections between neurons to form memories, you also need spares. By having redundancy and backups it means that you can still remember a key memory if one of those connections fails.

References

  1. Lenzie Ford et al. CPEB3 inhibits translation of mRNA targets by localizing them to P bodiesPNAS, 2019 DOI: 10.1073/pnas.1815275116
  2. Walter G. Gonzalez, Hanwen Zhang, Anna Harutyunyan, Carlos Lois. Persistence of neuronal representations through time and damage in the hippocampusScience, 2019: Vol. 365, Issue 6455, pp. 821-825 DOI: 10.1126/science.aav9199