Loading Downloads
514Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

October 31, 2022

Episode 507 - Peering beneath Mars’ surface

How does a single sensor help change your outlook on a planet? A single small seismometer on Mars can help understand Mars' past, present and future. What do an ultrasound and Mars have in common? Both can use a single sensor to peer deep inside. Listening to the echoes of marsquakes helps researchers understand what's in Mars' core. Modelling the inside of Mars' core helps researchers understand its past and future. Mars is often thought to be volcanically dead, but there are signs of some activity. A cluster of marsquakes can help researchers find evidence of vulcanism on Mars.

  1. Sheng Wang, Hrvoje Tkalčić. Scanning for planetary cores with single-receiver intersource correlationsNature Astronomy, 2022; DOI: 10.1038/s41550-022-01796-8
  2. Simon C. Stähler, Anna Mittelholz, Cleément Perrin, Taichi Kawamura, Doyeon Kim, Martin Knapmeyer, Géraldine Zenhäusern, John Clinton, Domenico Giardini, Philippe Lognonné, W. Bruce Banerdt. Tectonics of Cerberus Fossae unveiled by marsquakesNature Astronomy, 2022; DOI: 10.1038/s41550-022-01803-y
October 10, 2022

Episode 504 - Looking inside living cells with Bioorthogonal chemistry

A big prize like the Nobel for Chemistry doesn't appear out of nowhere. To win a Nobel Prize, a lot of team work in laboratories and across the world has to come together. We find out about the research that led towards the Nobel Prize for chemistry and how it grew. How does Click Chemistry solve the problem of messy and complicated reactions? How do you look inside a cell when it's working without destroying it? How can you get precise tracking of cells behavior using Bioorthogonal chemistry.

  1. Castelvecchi, D. and Ledford, H., 2022. Chemists who invented revolutionary ‘click’ reactions win Nobel. [online] Nature.com. Available at: <https://www.nature.com/articles/d41586-022-03087-8> [Accessed 8 October 2022].
  2. Ramström, O., 2022. CLICK CHEMISTRY A N D BIOORTHOGONAL CHEMISTRY. [online] Nobelprize.org. Available at: <https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf> [Accessed 8 October 2022].
  3. Zhang, H., 2022. Nobel Prize: How click chemistry and bioorthogonal chemistry are transforming the pharmaceutical and material industries. [online] The Conversation. Available at: <https://theconversation.com/nobel-prize-how-click-chemistry-and-bioorthogonal-chemistry-are-transforming-the-pharmaceutical-and-material-industries-191995> [Accessed 8 October 2022].
October 3, 2022

Episode 503 - Blending nanotubes and living cells

September 5, 2022

Episode 499 - Air and atmospheres on exoplanets

CO2 gets a lot of bad press on earth, but in space, it could actually be incredibly helpful. On Mars, the Perseverance mission turned CO2 into Oxygen just like a tree. Making air on Mars requires a bit of Moxie and Perseverance. Mar's atmosphere may be thin, highly variable and full of CO2 but it can be harnessed to produce Oxygen. Could future mission to Mars make their own oxygen on the surface of Mars? Finding CO2 on exoplanets has been incredibly hard but the JWST helps shed light on this universal gas. Incredible hot, massive but not super dense, the Hot Jupiter WASP-39b becomes the latest target of the JWST. What can a hot Jupiter like WASP-39b teach us about exoplanet formation?

  1. The JWST Transiting Exoplanet Community Early Release Science Team et al. Identification of carbon dioxide in an exoplanet atmosphereNature (in press), 2022 [abstract]
  2. Jeffrey A. Hoffman, Michael H. Hecht, Donald Rapp, Joseph J. Hartvigsen, Jason G. Soohoo, Asad M. Aboobaker, John B. Mcclean, Andrew M. Liu, Eric D. Hinterman, Nasr, Shravan Hariharan, Kyle J. Horn, Forrest E. Meyen, Harald Okkels, Parker Steen, Singaravelu Elangovan, Christopher R. Graves, Piyush Khopkar, Morten B. Madsen, Gerald E. Voecks, Peter, H. Smith, Theis, L. Skafte, Koorosh R. Araghiand, David J. Eisenman. Mars Oxygen ISRU Experiment (MOXIE)—Preparing for human Mars explorationScience Advances, 2022 DOI: DOI: 10.1126/sciadv.abp8636
August 29, 2022

Episode 498 - Proteins, MRNA and fighting back against cancer

How can we develop new treatments to tackle antibiotic resistance and tumors. Antibiotics were the miracle of public health in the 20th century, but how can we establish new treatments into the 21st. Find the right protein and you can stop bacteria in its tracks by splitting it in two. New treatments can tackle antibiotic resistant bacteria by using proteins to break them in two. Cancer vaccines are benefiting from the mRNA revolution. A challenge with vaccines is that they can end up in the liver, so how do you get them to  deliver their instructions more effectively. Using special lipid nano particles, cancer mRNA vaccines can target the lymph nodes making for more powerful vaccines.

  1. Shouya Feng, Daniel Enosi Tuipulotu, Abhimanu Pandey, Weidong Jing, Cheng Shen, Chinh Ngo, Melkamu B. Tessema, Fei-Ju Li, Daniel Fox, Anukriti Mathur, Anyang Zhao, Runli Wang, Klaus Pfeffer, Daniel Degrandi, Masahiro Yamamoto, Patrick C. Reading, Gaetan Burgio, Si Ming Man. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-32127-0
  2. Jinjin Chen, Zhongfeng Ye, Changfeng Huang, Min Qiu, Donghui Song, Yamin Li, Qiaobing Xu. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response. Proceedings of the National Academy of Sciences, 2022; 119 (34) DOI: 10.1073/pnas.2207841119
August 22, 2022

Episode 497 - Wearable med-tech inside and out

Wearable medical devices inside and outside of your body. Understanding what's happening inside your body can be tricky. Lugging around a scanning device with you all day isn't practical, but how can doctors tell what's happening in your daily life? Want to know what your organs are doing when you go for a jog or live your daily life? Wearable ultrasonic patches can give precise and long term ultrasounds making precise medicine possible. Stimulating nerves is a useful treatment for some conditions like Parkinson's or epilepsy but are very invasive. How can you use magnets to make these treatments much more friendly.

  1. Chonghe Wang, Xiaoyu Chen, Liu Wang, Mitsutoshi Makihata, Hsiao-Chuan Liu, Tao Zhou, Xuanhe Zhao. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science, 2022; 377 (6605): 517 DOI: 10.1126/science.abo2542
  2. Joshua C. Chen, Peter Kan, Zhanghao Yu, Fatima Alrashdan, Roberto Garcia, Amanda Singer, C. S. Edwin Lai, Ben Avants, Scott Crosby, Zhongxi Li, Boshuo Wang, Michelle M. Felicella, Ariadna Robledo, Angel V. Peterchev, Stefan M. Goetz, Jeffrey D. Hartgerink, Sunil A. Sheth, Kaiyuan Yang, Jacob T. Robinson. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nature Biomedical Engineering, 2022; DOI: 10.1038/s41551-022-00873-7
August 8, 2022

Episode 495 - Plants without sunlight and electricity from sweat

How can we take ideas from nature and turn them upside down like growing plants without sunlight. There are some plants that thrive in 'low light' but what if they needed no light? Is it possible to change photosynthesis to work even without sunlight? Photosynthesis is great and all, but it's only around 1% efficient, so can it be improved? IF you were to make artificial photosynthesis can it outperform good ol natural sunlight? Biofilms are often the scourge of wearable devices, but what if they could help generate power? Turning sweat into electricity with bacteria could power your wearable devices.

  1. Elizabeth C. Hann, Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao, Robert E. Jinkerson. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food, 2022; 3 (6): 461 DOI: 10.1038/s43016-022-00530-x
  2. Elizabeth C. Hann, Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao, Robert E. Jinkerson. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food, 2022; 3 (6): 461 DOI: 10.1038/s43016-022-00530-x
July 11, 2022

Episode 491 - Impacts and the messy history of the early solar system

The early history of our solar system can be deciphered by studying impact craters and meteorites. Craters on the Moon tell us a lot about the violent history of our solar system. Just how many impacts have there been on the Moon? We can study the porosity of the Moon to better estimate just how many impacts have occurred on it. How did Mars get it's atmosphere and from where? A Martian meteorite from deep in the core can tell us a lot about the solar nebula that formed our solar system. Mars formed relatively quickly, before the solar nebula dissipated.

  1. Ya Huei Huang, Jason M. Soderblom, David A. Minton, Masatoshi Hirabayashi, H. Jay Melosh. Bombardment history of the Moon constrained by crustal porosityNature Geoscience, 2022; DOI: 10.1038/s41561-022-00969-4
  2. Sandrine Péron, Sujoy Mukhopadhyay. Krypton in the Chassigny meteorite shows Mars accreted chondritic volatiles before nebular gasesScience, 2022; DOI: 10.1126/science.abk1175
July 4, 2022

Episode 490 - The history of fire on Earth

The history of fire on earth from the first wildfires to the first use to cook. We all know you need fuel and oxygen for fire, but when did the first fires occur on Earth. When did the first wild fires occur on earth? What was there to burn on early Earth if there weren't any large trees or plants? Giant mushrooms and large fields of moss, early Earth was very different but it could still have wildfires. When did the first hominids use fire as a tool? How can we identify if something that was burn was done so deliberately or accidentally. We know at some point hominids used fire as a tool, but when exactly -  200,500 800 million years ago?

  1. Zane Stepka, Ido Azuri, Liora Kolska Horwitz, Michael Chazan, Filipe Natalio. Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya)Proceedings of the National Academy of Sciences, 2022; 119 (25) DOI: 10.1073/pnas.2123439119
  2. Ian J. Glasspool, Robert A. Gastaldo. Silurian wildfire proxies and atmospheric oxygenGeology, 2022; DOI: 10.1130/G50193.1
June 21, 2022

Episode 488 -Mysteries from the formation of our solar system

From cosmic rays in Antarctica, to chasing Eclipses to learn about stellar weather. Neutrinos are hard to track and detect, as are cosmic rays. Neutrinos suddenly coming out of Antarctica baffled scientists hunting for cosmic rays.  Underground glacial lakes, compacted snow, cosmic can help explain mysterious neutrino emissions. Tracking eclipses and gathering data over 20 years can help us understand stellar weather. By studying the Sun's corona, scientists can better understand the magnetic field and stellar weather. The sun changes activity over 11 year cycles, and it's magnetic field also rearranges itself from highly structured to loose and messy.  

  1. Ian M. Shoemaker, Alexander Kusenko, Peter Kuipers Munneke, Andrew Romero-Wolf, Dustin M. Schroeder, Martin J. Siegert. Reflections on the anomalous ANITA events: the Antarctic subsurface as a possible explanationAnnals of Glaciology, 2020; 1 DOI: 10.1017/aog.2020.19
  2. Benjamin Boe, Shadia Habbal, Miloslav Druckmüller. Coronal Magnetic Field Topology from Total Solar Eclipse ObservationsThe Astrophysical Journal, 2020; 895 (2): 123 DOI: 10.3847/1538-4357/ab8ae6
May 24, 2022

Episode 484 - The links between the Core and the volcanos on the surface

How do seismic waves travel through our planet? Is it possible to 'slow down' a seismic wave? What causes 'hotspot volcanoes'? What strange things happen at the boundary between the core and the mantle? The mantle is a dynamic place, and pockets of 'dense' rock can slow and shape heat flow from deep below to the surface. Dense iron rich pockets of rock at the edge of the Core could influence where hotspot volcanoes occur. 

  1. Zhi Li, Kuangdai Leng, Jennifer Jenkins, Sanne Cottaar. Kilometer-scale structure on the core–mantle boundary near HawaiiNature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-30502-5
May 16, 2022

Episode 483 - Constantly changing moons of Jupiter

Jupiter's moons may be way more dynamic than we previously thought. Europa has the most potential to harbor life outside of Earth, but it's ice sheets may be more Earth like than we imagined. Europa's spectacular double ridges are similar to those found in Greenland. The ice sheets on Europa may not be static and still, but churning. Melting and refreezing could drive exchange between the surface of Europa and it's icey depths. How do you form sand dunes without any wind? Is it possible to form a Dune on Io using just volcanic flows and sulfur snows?

  1. Culberg, R., Schroeder, D.M. & Steinbrügge, G. Double ridge formation over shallow water sills on Jupiter’s moon Europa. Nat Commun, 2022 DOI: 10.1038/s41467-022-29458-3
  2. George D. McDonald, Joshua Méndez Harper, Lujendra Ojha, Paul Corlies, Josef Dufek, Ryan C. Ewing, Laura Kerber. Aeolian sediment transport on Io from lava–frost interactions. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-29682-x
May 9, 2022

Episode 482 - Nova and Micronova not quite super still immensely powerful

Supernova get all the press, but Nova and Micronova are still pretty powerful. White dwarf stars are normally pretty inactive, unless some hydrogen ends up kickstarting them again. Enough helium leeched from a nearby star can ignite the entire surface of a white dwarf. Nova may not destroy the star, but they can create immensely powerful explosions and particles. The right combination of White Dwarf and Red Giant can create powerful particles near the speed of light. Micronova sound small but they are still colossal and brief explosions on white dwarf stars. Not powerful enough to ignite the whole surface of a star, but definitely enough to destroy a planet, micronova are quite deadly.

  1. Scaringi, S., Groot, P.J., Knigge, C. et al. Localized thermonuclear bursts from accreting magnetic white dwarfsNature, 2022 DOI: 10.1038/s41586-022-04495-6
  2. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, M. Artero, K. Asano, D. Baack, A. Babić, A. Baquero, U. Barres de Almeida, J. A. Barrio, I. Batković, J. Becerra González, W. Bednarek, L. Bellizzi, E. Bernardini, M. Bernardos, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, A. Biland, O. Blanch, H. Bökenkamp, G. Bonnoli, Ž. Bošnjak, G. Busetto, R. Carosi, G. Ceribella, M. Cerruti, Y. Chai, A. Chilingarian, S. Cikota, S. M. Colak, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D’Amico, V. D’Elia, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, E. Do Souto Espiñeira, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, V. Fallah Ramazani, L. Fariña Alonso, A. Fattorini, M. V. Fonseca, L. Font, C. Fruck, S. Fukami, Y. Fukazawa, R. J. García López, M. Garczarczyk, S. Gasparyan, M. Gaug, N. Giglietto, F. Giordano, P. Gliwny, N. Godinović, J. G. Green, D. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, J. Hoang, D. Hrupec, M. Hütten, T. Inada, K. Ishio, Y. Iwamura, I. Jiménez Martínez, J. Jormanainen, L. Jouvin, D. Kerszberg, Y. Kobayashi, H. Kubo, J. Kushida, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, L. Linhoff, S. Lombardi, F. Longo, R. López-Coto, M. López-Moya, A. López-Oramas, S. Loporchio, B. Machado de Oliveira Fraga, C. Maggio, P. Majumdar, M. Makariev, M. Mallamaci, G. Maneva, M. Manganaro, K. Mannheim, L. Maraschi, M. Mariotti, M. Martínez, A. Mas Aguilar, D. Mazin, S. Menchiari, S. Mender, S. Mićanović, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, E. Molina, A. Moralejo, D. Morcuende, V. Moreno, E. Moretti, T. Nakamori, L. Nava, V. Neustroev, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, K. Noda, S. Nozaki, Y. Ohtani, T. Oka, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletić, P. Peñil, M. Persic, M. Pihet, P. G. Prada Moroni, E. Prandini, C. Priyadarshi, I. Puljak, W. Rhode, M. Ribó, J. Rico, C. Righi, A. Rugliancich, N. Sahakyan, T. Saito, S. Sakurai, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, T. Schweizer, J. Sitarek, I. Šnidarić, D. Sobczynska, A. Spolon, A. Stamerra, J. Strišković, D. Strom, M. Strzys, Y. Suda, T. Surić, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, T. Terzić, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, G. Vanzo, M. Vazquez Acosta, S. Ventura, V. Verguilov, C. F. Vigorito, V. Vitale, I. Vovk, M. Will, C. Wunderlich, T. Yamamoto, D. Zarić, F. Ambrosino, M. Cecconi, G. Catanzaro, C. Ferrara, A. Frasca, M. Munari, L. Giustolisi, J. Alonso-Santiago, M. Giarrusso, U. Munari, P. Valisa. Proton acceleration in thermonuclear nova explosions revealed by gamma raysNature Astronomy, 2022; DOI: 10.1038/s41550-022-01640-z
March 28, 2022

Episode 476 - Capturing interstellar storms and gas

Space isn't 'empty' but is often filled with gas and interstellar wind. Gas flows and moves around our universe forming stars, planets and galaxies, but how does it get there? How can you capture the complex motion of interstellar gas? What connects dragonflies with taking pictures of interstellar gas? Strapping a whole bunch of cameras together can help scientists image the faintest of light. Violent eruptions and messy eating by Neutron stars and black holes can help us understand the way interstellar gas moves in space. When a neutron star devours a planet, the remnants and gas flows can tell us a lot about star formation.

Journal References:

  1. Imad Pasha, Deborah Lokhorst, Pieter G. van Dokkum, Seery Chen, Roberto Abraham, Johnny Greco, Shany Danieli, Tim Miller, Erin Lippitt, Ava Polzin, Zili Shen, Michael A. Keim, Qing Liu, Allison Merritt, Jielai Zhang. A Nascent Tidal Dwarf Galaxy Forming within the Northern H i Streamer of M82. The Astrophysical Journal Letters, 2021; 923 (2): L21 DOI: 10.3847/2041-8213/ac3ca6
  2. Qing Liu, Roberto Abraham, Colleen Gilhuly, Pieter van Dokkum, Peter G. Martin, Jiaxuan Li, Johnny P. Greco, Deborah Lokhorst, Seery Chen, Shany Danieli, Michael A. Keim, Allison Merritt, Tim B. Miller, Imad Pasha, Ava Polzin, Zili Shen, Jielai Zhang. A Method to Characterize the Wide-angle Point-Spread Function of Astronomical Images. The Astrophysical Journal, 2022; 925 (2): 219 DOI: 10.3847/1538-4357/ac32c6
  3. N. Castro Segura, C. Knigge, K. S. Long, D. Altamirano, M. Armas Padilla, C. Bailyn, D. A. H. Buckley, D. J. K. Buisson, J. Casares, P. Charles, J. A. Combi, V. A. Cúneo, N. D. Degenaar, S. del Palacio, M. Díaz Trigo, R. Fender, P. Gandhi, M. Georganti, C. Gutiérrez, J. V. Hernandez Santisteban, F. Jiménez-Ibarra, J. Matthews, M. Méndez, M. Middleton, T. Muñoz-Darias, M. Özbey Arabacı, M. Pahari, L. Rhodes, T. D. Russell, S. Scaringi, J. van den Eijnden, G. Vasilopoulos, F. M. Vincentelli, P. Wiseman. A persistent ultraviolet outflow from an accreting neutron star binary transient. Nature, 2022; 603 (7899): 52 DOI: 10.1038/s41586-021-04324-2
March 7, 2022

Episode 473 - Super materials from Molluscs and Scallops

Making super materials by learning the secrets of molluscs and scallops. How are scallops are able to survive the super-cool water in Antarctica. What makes Antarctic scallop shells able to simply brush aside ice? How do you shed a skin of ice from a scallop? What connects scallops with making airplanes more efficient? How do mussels manage to stick so well to things? Is it possible to replicate the stickiness of a mussel? Mussels make themselves near impossible to remove, so can you make them even stickier?

  1. William S. Y. Wong, Lukas Hauer, Paul A. Cziko, Konrad Meister. Cryofouling avoidance in the Antarctic scallop Adamussium colbecki. Communications Biology, 2022; 5 (1) DOI: 10.1038/s42003-022-03023-6
  2. Or Berger, Claudia Battistella, Yusu Chen, Julia Oktawiec, Zofia E. Siwicka, Danielle Tullman-Ercek, Muzhou Wang, Nathan C. Gianneschi. Mussel Adhesive-Inspired Proteomimetic Polymer. Journal of the American Chemical Society, 2022; DOI: 10.1021/jacs.1c10936
February 21, 2022

Episode 471 - Extreme weather and protecting cities

Ways to protect our cities as climate changes causes more extreme weather. How can we better prepare our infrastructure for damage from extreme storms. Extreme events like storm Eunice can wreck havoc on electricity networks. How can we better prepare our cities? Climate changes makes extreme weather more common so what can be done to predict the risk to key infrastructure? Urban areas can swelter in heat waves, but can urban greening help limit the impact? What benefits does urban greening provide to limit flooding and overheating in extreme weather? When an atmospheric river meets a mountain range it can create a deluge.

  1. Sean Wilkinson, Sarah Dunn, Russell Adams, Nicolas Kirchner-Bossi, Hayley J. Fowler, Samuel González Otálora, David Pritchard, Joana Mendes, Erika J. Palin, Steven C. Chan. Consequence forecasting: A rational framework for predicting the consequences of approaching stormsClimate Risk Management, 2022; 35: 100412 DOI: 10.1016/j.crm.2022.100412
  2. Y. Kamae, Y. Imada, H. Kawase, W. Mei. Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global WarmingGeophysical Research Letters, 2022 DOI: 10.1029/2021GL09603
  3. Katja Schmidt, Ariane Walz. Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interactionOne Ecosystem, 2021; 6 DOI: 10.3897/oneeco.6.e65706
  4. M. O. Cuthbert, G. C. Rau, M. Ekström, D. M. O’Carroll, A. J. Bates. Global climate-driven trade-offs between the water retention and cooling benefits of urban greeningNature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-28160-8
February 14, 2022

Episode 470 - Mysteries in our galaxy unearthed by radio telescopes

Radio telescopes cover large areas and can find strange objects lurking in space. From slowly pulsing magnetars to cosmic ray filaments. Surrounding the black hole at the center of the Milky way are strange but regular filament like structures. Cosmic rays electroncs moving near the speed of light are creating regular 'gash' like filaments around the center of the Milky Way. There is a supermassive blackhole at the center of the Milky Way, but it's surrounded by even weirder things. Astronomers deal with 'transients' from slow ones like supernova to fast pulses like Pulsars...but there might be something in between. A new type of stellar object is pulsing three times an hour dumping out huge amounts of radio waves all relatively close to home.

  1. F. Yusef-Zadeh, R. G. Arendt, M. Wardle, I. Heywood, W. Cotton, F. Camilo. Statistical Properties of the Population of the Galactic Center Filaments: the Spectral Index and Equipartition Magnetic FieldThe Astrophysical Journal Letters, 2022; 925 (2): L18 DOI: 10.3847/2041-8213/ac4802
  2. N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. S. Morgan, G. E. Anderson, G. H. Heald, T. J. Galvin. A radio transient with unusually slow periodic emissionNature, 2022; 601 (7894): 526 DOI: 10.1038/s41586-021-04272-x
January 31, 2022

Episode 468 - Stopping frostbite and bacteria using chemistry and physics

How can we protect skin from frostbite before it happens? Scientists freeze cells in the lab all the time, so how can that be used to help prevent frostbite? When treating frostbite minutes can make a huge difference. How can we improve prevention of the worst injuries from frostbite? You've heard of sunscreen but what about frostbite cream. Antiobiotic resistance is a serious issue, but what plasma could be a secret weapon. Using plasma we can engineer antimicrobial surfaces. Plasma sintered surfaces can wipe out bacteria.

  1. Aanchal Gupta, Betsy Reshma G, Praveen Singh, Ekta Kohli, Shantanu Sengupta, Munia Ganguli. A Combination of Synthetic Molecules Acts as Antifreeze for the Protection of Skin against Cold-Induced Injuries. ACS Applied Bio Materials, 2021; 5 (1): 252 DOI: 10.1021/acsabm.1c01058
  2. Anton Nikiforov, Chuanlong Ma, Andrei Choukourov, Fabio Palumbo. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics, 2022; 131 (1): 011102 DOI: 10.1063/5.0066724
January 24, 2022

Episode 467 - Repairing throats and better implants

How can we make stronger implants that don't get rejected by the body? Bioactive materials can help make implants feel more at home. Replacing a knee or a hip requires not just strength but also compatibility. A new coating method makes it easier for implants to fit in. An implant has to be strong yet flexible, friendly to cells but not bacteria - it's challenging. Your vocal chords are subject to extreme forces, so how can we design an implant to repair them? Hydro-gels can help repair damaged organs and tissue even in extreme environments like your vocal chods.

  1. Imran Deen, Gurpreet Singh Selopal, Zhiming M. Wang, Federico Rosei. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implantsJournal of Colloid and Interface Science, 2022; 607: 869 DOI: 10.1016/j.jcis.2021.08.199
  2. Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, Luc Mongeau. Injectable, Pore‐Forming, Perfusable Double‐Network Hydrogels Resilient to Extreme Biomechanical StimulationsAdvanced Science, 2021; 2102627 DOI: 10.1002/advs.202102627
January 17, 2022

Episode 466 - Tsunamis, underwater volcanoes and magnetic fields

When Tsunami's strike, every extra minute of notice can help save lives. How can scientists better predict the height and journey of a tsunami? We look at the ways scientists can use tectonic plates or magnetic fields to improve tsunami predictions. Where an earthquake occurs can make a big difference to the size of a tsunami. The shallower an earthquake in a thinner sub-ducting plate can lead to higher tsunamis. When you move a large amount of sea-water the earths magnetic field changes, just enough to detect. Like reading the vibrations in seismic waves, earth's magnetic field changes enough for you to identify a tsunami. Using magnetic fields you can measure and asses the height of a tsunami much faster.

  1. Zhiheng Lin, Hiroaki Toh, Takuto Minami. Direct Comparison of the Tsunami‐Generated Magnetic Field With Sea Level Change for the 2009 Samoa and 2010 Chile TsunamisJournal of Geophysical Research: Solid Earth, 2021; 126 (11) DOI: 10.1029/2021JB022760
  2. Kwok Fai Cheung, Thorne Lay, Lin Sun, Yoshiki Yamazaki. Tsunami size variability with rupture depthNature Geoscience, 2021; DOI: 10.1038/s41561-021-00869-z