Loading Downloads
486Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

May 16, 2022

Episode 483 - Constantly changing moons of Jupiter

Jupiter's moons may be way more dynamic than we previously thought. Europa has the most potential to harbor life outside of Earth, but it's ice sheets may be more Earth like than we imagined. Europa's spectacular double ridges are similar to those found in Greenland. The ice sheets on Europa may not be static and still, but churning. Melting and refreezing could drive exchange between the surface of Europa and it's icey depths. How do you form sand dunes without any wind? Is it possible to form a Dune on Io using just volcanic flows and sulfur snows?

  1. Culberg, R., Schroeder, D.M. & Steinbrügge, G. Double ridge formation over shallow water sills on Jupiter’s moon Europa. Nat Commun, 2022 DOI: 10.1038/s41467-022-29458-3
  2. George D. McDonald, Joshua Méndez Harper, Lujendra Ojha, Paul Corlies, Josef Dufek, Ryan C. Ewing, Laura Kerber. Aeolian sediment transport on Io from lava–frost interactions. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-29682-x
May 9, 2022

Episode 482 - Nova and Micronova not quite super still immensely powerful

Supernova get all the press, but Nova and Micronova are still pretty powerful. White dwarf stars are normally pretty inactive, unless some hydrogen ends up kickstarting them again. Enough helium leeched from a nearby star can ignite the entire surface of a white dwarf. Nova may not destroy the star, but they can create immensely powerful explosions and particles. The right combination of White Dwarf and Red Giant can create powerful particles near the speed of light. Micronova sound small but they are still colossal and brief explosions on white dwarf stars. Not powerful enough to ignite the whole surface of a star, but definitely enough to destroy a planet, micronova are quite deadly.

  1. Scaringi, S., Groot, P.J., Knigge, C. et al. Localized thermonuclear bursts from accreting magnetic white dwarfsNature, 2022 DOI: 10.1038/s41586-022-04495-6
  2. V. A. Acciari, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, M. Artero, K. Asano, D. Baack, A. Babić, A. Baquero, U. Barres de Almeida, J. A. Barrio, I. Batković, J. Becerra González, W. Bednarek, L. Bellizzi, E. Bernardini, M. Bernardos, A. Berti, J. Besenrieder, W. Bhattacharyya, C. Bigongiari, A. Biland, O. Blanch, H. Bökenkamp, G. Bonnoli, Ž. Bošnjak, G. Busetto, R. Carosi, G. Ceribella, M. Cerruti, Y. Chai, A. Chilingarian, S. Cikota, S. M. Colak, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D’Amico, V. D’Elia, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, E. Do Souto Espiñeira, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, V. Fallah Ramazani, L. Fariña Alonso, A. Fattorini, M. V. Fonseca, L. Font, C. Fruck, S. Fukami, Y. Fukazawa, R. J. García López, M. Garczarczyk, S. Gasparyan, M. Gaug, N. Giglietto, F. Giordano, P. Gliwny, N. Godinović, J. G. Green, D. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, J. Hoang, D. Hrupec, M. Hütten, T. Inada, K. Ishio, Y. Iwamura, I. Jiménez Martínez, J. Jormanainen, L. Jouvin, D. Kerszberg, Y. Kobayashi, H. Kubo, J. Kushida, A. Lamastra, D. Lelas, F. Leone, E. Lindfors, L. Linhoff, S. Lombardi, F. Longo, R. López-Coto, M. López-Moya, A. López-Oramas, S. Loporchio, B. Machado de Oliveira Fraga, C. Maggio, P. Majumdar, M. Makariev, M. Mallamaci, G. Maneva, M. Manganaro, K. Mannheim, L. Maraschi, M. Mariotti, M. Martínez, A. Mas Aguilar, D. Mazin, S. Menchiari, S. Mender, S. Mićanović, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, E. Molina, A. Moralejo, D. Morcuende, V. Moreno, E. Moretti, T. Nakamori, L. Nava, V. Neustroev, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, K. Noda, S. Nozaki, Y. Ohtani, T. Oka, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletić, P. Peñil, M. Persic, M. Pihet, P. G. Prada Moroni, E. Prandini, C. Priyadarshi, I. Puljak, W. Rhode, M. Ribó, J. Rico, C. Righi, A. Rugliancich, N. Sahakyan, T. Saito, S. Sakurai, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, T. Schweizer, J. Sitarek, I. Šnidarić, D. Sobczynska, A. Spolon, A. Stamerra, J. Strišković, D. Strom, M. Strzys, Y. Suda, T. Surić, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, T. Terzić, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, G. Vanzo, M. Vazquez Acosta, S. Ventura, V. Verguilov, C. F. Vigorito, V. Vitale, I. Vovk, M. Will, C. Wunderlich, T. Yamamoto, D. Zarić, F. Ambrosino, M. Cecconi, G. Catanzaro, C. Ferrara, A. Frasca, M. Munari, L. Giustolisi, J. Alonso-Santiago, M. Giarrusso, U. Munari, P. Valisa. Proton acceleration in thermonuclear nova explosions revealed by gamma raysNature Astronomy, 2022; DOI: 10.1038/s41550-022-01640-z
March 28, 2022

Episode 476 - Capturing interstellar storms and gas

Space isn't 'empty' but is often filled with gas and interstellar wind. Gas flows and moves around our universe forming stars, planets and galaxies, but how does it get there? How can you capture the complex motion of interstellar gas? What connects dragonflies with taking pictures of interstellar gas? Strapping a whole bunch of cameras together can help scientists image the faintest of light. Violent eruptions and messy eating by Neutron stars and black holes can help us understand the way interstellar gas moves in space. When a neutron star devours a planet, the remnants and gas flows can tell us a lot about star formation.

Journal References:

  1. Imad Pasha, Deborah Lokhorst, Pieter G. van Dokkum, Seery Chen, Roberto Abraham, Johnny Greco, Shany Danieli, Tim Miller, Erin Lippitt, Ava Polzin, Zili Shen, Michael A. Keim, Qing Liu, Allison Merritt, Jielai Zhang. A Nascent Tidal Dwarf Galaxy Forming within the Northern H i Streamer of M82. The Astrophysical Journal Letters, 2021; 923 (2): L21 DOI: 10.3847/2041-8213/ac3ca6
  2. Qing Liu, Roberto Abraham, Colleen Gilhuly, Pieter van Dokkum, Peter G. Martin, Jiaxuan Li, Johnny P. Greco, Deborah Lokhorst, Seery Chen, Shany Danieli, Michael A. Keim, Allison Merritt, Tim B. Miller, Imad Pasha, Ava Polzin, Zili Shen, Jielai Zhang. A Method to Characterize the Wide-angle Point-Spread Function of Astronomical Images. The Astrophysical Journal, 2022; 925 (2): 219 DOI: 10.3847/1538-4357/ac32c6
  3. N. Castro Segura, C. Knigge, K. S. Long, D. Altamirano, M. Armas Padilla, C. Bailyn, D. A. H. Buckley, D. J. K. Buisson, J. Casares, P. Charles, J. A. Combi, V. A. Cúneo, N. D. Degenaar, S. del Palacio, M. Díaz Trigo, R. Fender, P. Gandhi, M. Georganti, C. Gutiérrez, J. V. Hernandez Santisteban, F. Jiménez-Ibarra, J. Matthews, M. Méndez, M. Middleton, T. Muñoz-Darias, M. Özbey Arabacı, M. Pahari, L. Rhodes, T. D. Russell, S. Scaringi, J. van den Eijnden, G. Vasilopoulos, F. M. Vincentelli, P. Wiseman. A persistent ultraviolet outflow from an accreting neutron star binary transient. Nature, 2022; 603 (7899): 52 DOI: 10.1038/s41586-021-04324-2
March 7, 2022

Episode 473 - Super materials from Molluscs and Scallops

Making super materials by learning the secrets of molluscs and scallops. How are scallops are able to survive the super-cool water in Antarctica. What makes Antarctic scallop shells able to simply brush aside ice? How do you shed a skin of ice from a scallop? What connects scallops with making airplanes more efficient? How do mussels manage to stick so well to things? Is it possible to replicate the stickiness of a mussel? Mussels make themselves near impossible to remove, so can you make them even stickier?

  1. William S. Y. Wong, Lukas Hauer, Paul A. Cziko, Konrad Meister. Cryofouling avoidance in the Antarctic scallop Adamussium colbecki. Communications Biology, 2022; 5 (1) DOI: 10.1038/s42003-022-03023-6
  2. Or Berger, Claudia Battistella, Yusu Chen, Julia Oktawiec, Zofia E. Siwicka, Danielle Tullman-Ercek, Muzhou Wang, Nathan C. Gianneschi. Mussel Adhesive-Inspired Proteomimetic Polymer. Journal of the American Chemical Society, 2022; DOI: 10.1021/jacs.1c10936
February 21, 2022

Episode 471 - Extreme weather and protecting cities

Ways to protect our cities as climate changes causes more extreme weather. How can we better prepare our infrastructure for damage from extreme storms. Extreme events like storm Eunice can wreck havoc on electricity networks. How can we better prepare our cities? Climate changes makes extreme weather more common so what can be done to predict the risk to key infrastructure? Urban areas can swelter in heat waves, but can urban greening help limit the impact? What benefits does urban greening provide to limit flooding and overheating in extreme weather? When an atmospheric river meets a mountain range it can create a deluge.

  1. Sean Wilkinson, Sarah Dunn, Russell Adams, Nicolas Kirchner-Bossi, Hayley J. Fowler, Samuel González Otálora, David Pritchard, Joana Mendes, Erika J. Palin, Steven C. Chan. Consequence forecasting: A rational framework for predicting the consequences of approaching stormsClimate Risk Management, 2022; 35: 100412 DOI: 10.1016/j.crm.2022.100412
  2. Y. Kamae, Y. Imada, H. Kawase, W. Mei. Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global WarmingGeophysical Research Letters, 2022 DOI: 10.1029/2021GL09603
  3. Katja Schmidt, Ariane Walz. Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interactionOne Ecosystem, 2021; 6 DOI: 10.3897/oneeco.6.e65706
  4. M. O. Cuthbert, G. C. Rau, M. Ekström, D. M. O’Carroll, A. J. Bates. Global climate-driven trade-offs between the water retention and cooling benefits of urban greeningNature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-28160-8
February 14, 2022

Episode 470 - Mysteries in our galaxy unearthed by radio telescopes

Radio telescopes cover large areas and can find strange objects lurking in space. From slowly pulsing magnetars to cosmic ray filaments. Surrounding the black hole at the center of the Milky way are strange but regular filament like structures. Cosmic rays electroncs moving near the speed of light are creating regular 'gash' like filaments around the center of the Milky Way. There is a supermassive blackhole at the center of the Milky Way, but it's surrounded by even weirder things. Astronomers deal with 'transients' from slow ones like supernova to fast pulses like Pulsars...but there might be something in between. A new type of stellar object is pulsing three times an hour dumping out huge amounts of radio waves all relatively close to home.

  1. F. Yusef-Zadeh, R. G. Arendt, M. Wardle, I. Heywood, W. Cotton, F. Camilo. Statistical Properties of the Population of the Galactic Center Filaments: the Spectral Index and Equipartition Magnetic FieldThe Astrophysical Journal Letters, 2022; 925 (2): L18 DOI: 10.3847/2041-8213/ac4802
  2. N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. S. Morgan, G. E. Anderson, G. H. Heald, T. J. Galvin. A radio transient with unusually slow periodic emissionNature, 2022; 601 (7894): 526 DOI: 10.1038/s41586-021-04272-x
January 31, 2022

Episode 468 - Stopping frostbite and bacteria using chemistry and physics

How can we protect skin from frostbite before it happens? Scientists freeze cells in the lab all the time, so how can that be used to help prevent frostbite? When treating frostbite minutes can make a huge difference. How can we improve prevention of the worst injuries from frostbite? You've heard of sunscreen but what about frostbite cream. Antiobiotic resistance is a serious issue, but what plasma could be a secret weapon. Using plasma we can engineer antimicrobial surfaces. Plasma sintered surfaces can wipe out bacteria.

  1. Aanchal Gupta, Betsy Reshma G, Praveen Singh, Ekta Kohli, Shantanu Sengupta, Munia Ganguli. A Combination of Synthetic Molecules Acts as Antifreeze for the Protection of Skin against Cold-Induced Injuries. ACS Applied Bio Materials, 2021; 5 (1): 252 DOI: 10.1021/acsabm.1c01058
  2. Anton Nikiforov, Chuanlong Ma, Andrei Choukourov, Fabio Palumbo. Plasma technology in antimicrobial surface engineering. Journal of Applied Physics, 2022; 131 (1): 011102 DOI: 10.1063/5.0066724
January 24, 2022

Episode 467 - Repairing throats and better implants

How can we make stronger implants that don't get rejected by the body? Bioactive materials can help make implants feel more at home. Replacing a knee or a hip requires not just strength but also compatibility. A new coating method makes it easier for implants to fit in. An implant has to be strong yet flexible, friendly to cells but not bacteria - it's challenging. Your vocal chords are subject to extreme forces, so how can we design an implant to repair them? Hydro-gels can help repair damaged organs and tissue even in extreme environments like your vocal chods.

  1. Imran Deen, Gurpreet Singh Selopal, Zhiming M. Wang, Federico Rosei. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implantsJournal of Colloid and Interface Science, 2022; 607: 869 DOI: 10.1016/j.jcis.2021.08.199
  2. Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, Luc Mongeau. Injectable, Pore‐Forming, Perfusable Double‐Network Hydrogels Resilient to Extreme Biomechanical StimulationsAdvanced Science, 2021; 2102627 DOI: 10.1002/advs.202102627
January 17, 2022

Episode 466 - Tsunamis, underwater volcanoes and magnetic fields

When Tsunami's strike, every extra minute of notice can help save lives. How can scientists better predict the height and journey of a tsunami? We look at the ways scientists can use tectonic plates or magnetic fields to improve tsunami predictions. Where an earthquake occurs can make a big difference to the size of a tsunami. The shallower an earthquake in a thinner sub-ducting plate can lead to higher tsunamis. When you move a large amount of sea-water the earths magnetic field changes, just enough to detect. Like reading the vibrations in seismic waves, earth's magnetic field changes enough for you to identify a tsunami. Using magnetic fields you can measure and asses the height of a tsunami much faster.

  1. Zhiheng Lin, Hiroaki Toh, Takuto Minami. Direct Comparison of the Tsunami‐Generated Magnetic Field With Sea Level Change for the 2009 Samoa and 2010 Chile TsunamisJournal of Geophysical Research: Solid Earth, 2021; 126 (11) DOI: 10.1029/2021JB022760
  2. Kwok Fai Cheung, Thorne Lay, Lin Sun, Yoshiki Yamazaki. Tsunami size variability with rupture depthNature Geoscience, 2021; DOI: 10.1038/s41561-021-00869-z
January 3, 2022

Episode 464 - Rogue Planets and glass in meteorites

Rogue planets hurtling across space without a place to call home. How do we detect intergalactic nomads like Rogue planets? Just how many rogue planets are out there? Are there rogue planets lurking in our own solar system? Glass inside meteorites can help us understand early earth. How does meteorite rock differ from rock here on earth? What can we piece together about the cataclysmic events that formed glass inside meteorites? Rapidly heating then even more rapidly cooling coalesced glass inside meteorites.

  1. Núria Miret-Roig, Hervé Bouy, Sean N. Raymond, Motohide Tamura, Emmanuel Bertin, David Barrado, Javier Olivares, Phillip A. B. Galli, Jean-Charles Cuillandre, Luis Manuel Sarro, Angel Berihuete, Nuria Huélamo. A rich population of free-floating planets in the Upper Scorpius young stellar association. Nature Astronomy, 2021; DOI: 10.1038/s41550-021-01513-x
  2. Nicole X. Nie, Xin-Yang Chen, Timo Hopp, Justin Y. Hu, Zhe J. Zhang, Fang-Zhen Teng, Anat Shahar, Nicolas Dauphas. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Science Advances, 2021; 7 (49) DOI: 10.1126/sciadv.abl3929
December 20, 2021

Episode 462 - Fish helping make smart materials and renewable tech

What can fish scales teach us about the next generation of smart materials. Why is 'scale armor' often found in video games and on fish so strong? What is special about fish scales that can help us make a new generation of smart materials for clothing and structures? What do 35 million year old fish trapped in mud have to do with wind turbines and batteries? Renewable tech relies on Rare earth metals, so where do we find them? Studying fossilized fish can help us find more sources of rare earth metals to build more renewable tech.

  1. Haocheng Quan, Wen Yang, Marine Lapeyriere, Eric Schaible, Robert O. Ritchie, Marc A. Meyers. Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common CarpMatter, 2020; DOI: 10.1016/j.matt.2020.05.011
  2. Junichiro Ohta, Kazutaka Yasukawa, Tatsuo Nozaki, Yutaro Takaya, Kazuhide Mimura, Koichiro Fujinaga, Kentaro Nakamura, Yoichi Usui, Jun-Ichi Kimura, Qing Chang, Yasuhiro Kato. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling eventScientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-66835-8
December 6, 2021

Episode 460 - What shape is the heliosphere

Just what is the heliosphere and how doe sit work? What shape is the heliosphere (spoiler alert, probably not a sphere). At the very edge of our solar system lies the boundary between our neighborhood and interstellar space. Do outside forces from interstellar space jumble up the heliosphere? Sandwiched between Space and the Earth, the Ionsphere buzzes and hums with a pulsing generator. Winds from earth can bend and shape plasma in our ionsphere to make a generator. Moving a conducting object through a magnetic field can generate electricty, and its happening right now 100km above our heads.

  1. M. Opher, J. F. Drake, G. Zank, E. Powell, W. Shelley, M. Kornbleuth, V. Florinski, V. Izmodenov, J. Giacalone, S. Fuselier, K. Dialynas, A. Loeb, J. Richardson. A Turbulent Heliosheath Driven by the Rayleigh–Taylor InstabilityThe Astrophysical Journal, 2021; 922 (2): 181 DOI: 10.3847/1538-4357/ac2d2e
  2. Thomas J. Immel, Brian J. Harding, Roderick A. Heelis, Astrid Maute, Jeffrey M. Forbes, Scott L. England, Stephen B. Mende, Christoph R. Englert, Russell A. Stoneback, Kenneth Marr, John M. Harlander, Jonathan J. Makela. Regulation of ionospheric plasma velocities by thermospheric windsNature Geoscience, 2021; DOI: 10.1038/s41561-021-00848-4
November 15, 2021

Episode 457 - Not so Empty Space near Earth

Space  is big and vast, but whilst not densely packed like in Sci Fi, there's still so much going on around Earth's orbit. Mapping out the local neighborhood around Earth's orbit is tricky but important work. We think we have an idea about most Near Earth Asteroids but occasionally they can sneak up on is. A chip off the old block of the Moon has become one of our newest near Earth Objects. How we clean up space junk without touching it or grabbing it with a rocket? Can magnets help us handle delicate space junk? A satellite spiraling out of control is not an easy object to tame and de-orbit.

  1. Benjamin N. L. Sharkey, Vishnu Reddy, Renu Malhotra, Audrey Thirouin, Olga Kuhn, Albert Conrad, Barry Rothberg, Juan A. Sanchez, David Thompson, Christian Veillet. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 KamoʻoalewaCommunications Earth & Environment, 2021; 2 (1) DOI: 10.1038/s43247-021-00303-7
  2. Lan N. Pham, Griffin F. Tabor, Ashkan Pourkand, Jacob L. B. Aman, Tucker Hermans, Jake J. Abbott. Dexterous magnetic manipulation of conductive non-magnetic objectsNature, 2021; 598 (7881): 439 DOI: 10.1038/s41586-021-03966-6
November 1, 2021

Episode 455 - Growing rocket fuel on Mars and greener jet fuel on earth

Growing rocket fuel on the surface of Mars, and greener jet fuel here on earth. The problem with space travel is you have to take everything with you. Including fuel. Is there a way to grow your own fuel to make the load lighter on a rocket? A round trip to Mars needs billions of dollars of fuel. Is there a way we can reduce cost and energy by producing rocket fuel on the surface of Mars? How can you grow rocket fuel on mars using microbes? Would the same rocket fuel you use on Earth make sense to use on Mars? How can we clean up the aviation industry's carbon emissions? Are there alternative jet fuels that don't come at the expense of growing food? Bio-fuels are often produced at the expense of food, but are there alternatives that are win win? 
References:

  1. Nicholas S. Kruyer, Matthew J. Realff, Wenting Sun, Caroline L. Genzale, Pamela Peralta-Yahya. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategyNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-26393-7
  2. Asiful Alam, Md Farhad Hossain Masum, Puneet Dwivedi. Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United StatesGCB Bioenergy, 2021 DOI: 10.1111/.1gcbb2888
October 18, 2021

Episode 453 - The early days of our solar system

Studying the earliest days of our solar system by looking at meteorites. We don't have to travel to asteroids or dwarf planets in order to study their geology. By studying meteorites we can piece together the mystery behind the formation of our solar system. Asteroids seem to be 'missing' mantle like rock, so how can we find it by studying meteorites? Some meteorites can capture like a time capsule pieces from our early solar system. Some of this leftover bits from the early days of our solar system contain raw pieces from other stars. Sometimes in meteorites you can find matter that has traveled all the way from other stars.
References:

  1. Nan Liu, Barosch Jens, Larry R. Nittler, Conel M. O'D. Alexander, Jianhua Wang, Sergio Cristallo, Maurizio Busso, and Sara Palmerini. New multielement isotopic compositions of presolar SiC grains: implications for their stellar originsThe Astrophysical Journal Letters, 2021 DOI: 10.3847/2041-8213/ac260b
  2. Zoltan Vaci, James M. D. Day, Marine Paquet, Karen Ziegler, Qing-Zhu Yin, Supratim Dey, Audrey Miller, Carl Agee, Rainer Bartoschewitz, Andreas Pack. Olivine-rich achondrites from Vesta and the missing mantle problemNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-25808-9
  3. Meng-Hua Zhu, Alessandro Morbidelli, Wladimir Neumann, Qing-Zhu Yin, James M. D. Day, David C. Rubie, Gregory J. Archer, Natalia Artemieva, Harry Becker, Kai Wünnemann. Common feedstocks of late accretion for the terrestrial planetsNature Astronomy, 2021; DOI: 10.1038/s41550-021-01475-0
August 23, 2021

Episode 445 - De-carbonizing Transportation and Fertilizer

Can you really power a plane with enough batteries to fly across the world? How many batteries does a ship need to circumnavigate the globe? Is there an efficient way to stop relying on diesel and dirty jet fuel? How can we turn big CO2 emitters like ships and planes into CO2 negative systems? Can aviation and transport ever be carbon neutral? How can we make fertilizer without using so much energy? The Haber Bosch process helped feed the planet, but how can we replace it to save the planet?

 

References:

  1. Travis A. Schmauss, Scott A. Barnett. Viability of Vehicles Utilizing On-Board CO2 Capture. ACS Energy Letters, 2021; 3180 DOI: 10.1021/acsenergylett.1c01426
  2. Chade Lv, Lixiang Zhong, Hengjie Liu, Zhiwei Fang, Chunshuang Yan, Mengxin Chen, Yi Kong, Carmen Lee, Daobin Liu, Shuzhou Li, Jiawei Liu, Li Song, Gang Chen, Qingyu Yan, Guihua Yu. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021; DOI: 10.1038/s41893-021-00741-3
July 26, 2021

Episode 441 - Augmenting the human body to keep it safe

Using technology and tools to make the human body safer. How can we use exoskeletons to keep people safe? Does using a tool like an exoskeleton automatically make a task easier? How can technology that augments bodys hinder when trying to help? How can we keep our head safer during a collision. Countless people rely on bicycles for safe and green transport, but how do we make it safer? Bicycle helmets are a simple tool for helping save lives, but can they be made even safer with new materials? 

  1. Yibo Zhu, Eric B. Weston, Ranjana K. Mehta, William S. Marras. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions. Applied Ergonomics, 2021; 96: 103494 DOI: 10.1016/j.apergo.2021.103494
  2. Karl A Zimmerman, Etienne Laverse, Ravjeet Samra, Maria Yanez Lopez, Amy E Jolly, Niall J Bourke, Neil S N Graham, Maneesh C Patel, John Hardy, Simon Kemp, Huw R Morris, David J Sharp. White matter abnormalities in active elite adult rugby players. Brain Communications, 2021; 3 (3) DOI: 10.1093/braincomms/fcab133
July 5, 2021

Episode 438 - Super fast and dense White Dwarfs and odd Supernova

What happens at the end of a star's life if it doesn't go out with a bang? White dwarfs are the end stage for 97% of stars, but can they still go 'nova? What happens if two white dwarf stars merge together? Rotating once every 7 minutes with a magnetic field billions times stronger than the Sun, super dense white dwarfs break all the records. There are many types of supernova, but which one happened at the Crab Nebula in 1054? What happens if a star isn't quite heavy enough to have an iron core supernova? Electrons are so tiny compared to a supergiant star, but if they're taken away it can lead to a supernova.

  1. Caiazzo, I., Burdge, K.B., Fuller, J. et al. A highly magnetized and rapidly rotating white dwarf as small as the MoonNature, 2021 DOI: 10.1038/s41586-021-03615-y
  2. Daichi Hiramatsu, D. Andrew Howell, Schuyler D. Van Dyk, Jared A. Goldberg, Keiichi Maeda, Takashi J. Moriya, Nozomu Tominaga, Ken’ichi Nomoto, Griffin Hosseinzadeh, Iair Arcavi, Curtis McCully, Jamison Burke, K. Azalee Bostroem, Stefano Valenti, Yize Dong, Peter J. Brown, Jennifer E. Andrews, Christopher Bilinski, G. Grant Williams, Paul S. Smith, Nathan Smith, David J. Sand, Gagandeep S. Anand, Chengyuan Xu, Alexei V. Filippenko, Melina C. Bersten, Gastón Folatelli, Patrick L. Kelly, Toshihide Noguchi, Koichi Itagaki. The electron-capture origin of supernova 2018zdNature Astronomy, 2021; DOI: 10.1038/s41550-021-01384-2
June 28, 2021

Episode 437 - Dark Fish hiding in the ocean depths

Squeezing and grinding to create next generation materials from humble beginnings. Changing magnetic field by changing shape could open the door for more efficient computers. Magnetostriction causes that 'hum' you hear from electronics but it can be harnessed for good. Large electrical devices like transformers or fluorescent tubes shape influences their magnetic field. The next generation of computers may harness the way magnetic fields and physical shape can be linked. Forget rare earth metals, there is a more efficient way to make high powered computer chips out of humble iron and gallium. Luminescent polymers can be found in fancy OLED screens but are complex to produce. How can you make fancy luminescent polymers from generic polymers? By grinding them. A unique way of grinding and rolling basic generic polymers could create powerful luminescent polymers for use in high end screens, lasers and bioimaging.

  1. P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom, J. T. Heron. Engineering new limits to magnetostriction through metastability in iron-gallium alloys. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22793-x
  2. Koji Kubota, Naoki Toyoshima, Daiyo Miura, Julong Jiang, Satoshi Maeda, Mingoo Jin, Hajime Ito. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angewandte Chemie International Edition, 2021; DOI: 10.1002/anie.202105381
June 21, 2021

Episode 436 - Squeezing and grinding to create next generation materials from humble begingings

Squeezing and grinding to create next generation materials from humble beginnings. Changing magnetic field by changing shape could open the door for more efficient computers. Magnetostriction causes that 'hum' you hear from electronics but it can be harnessed for good. Large electrical devices like transformers or fluorescent tubes shape influences their magnetic field. The next generation of computers may harness the way magnetic fields and physical shape can be linked. Forget rare earth metals, there is a more efficient way to make high powered computer chips out of humble iron and gallium. Luminescent polymers can be found in fancy OLED screens but are complex to produce. How can you make fancy luminescent polymers from generic polymers? By grinding them. A unique way of grinding and rolling basic generic polymers could create powerful luminescent polymers for use in high end screens, lasers and bio-imaging.

  1. P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom, J. T. Heron. Engineering new limits to magnetostriction through metastability in iron-gallium alloys. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22793-x
  2. Koji Kubota, Naoki Toyoshima, Daiyo Miura, Julong Jiang, Satoshi Maeda, Mingoo Jin, Hajime Ito. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angewandte Chemie International Edition, 2021; DOI: 10.1002/anie.202105381