Loading Downloads
514Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

November 28, 2022

Episode 511 - How the earliest brains developed and handle touch

Peering into the history of brains with some amazing tiny fossils. How did the earliest brains develop? Is a head just an extension of a segmented body or something else entirely? How did the first brains and nervous systems evolve in arthropods. How does your body process the sense of touch? The faintest sensations of touch are handled by specialist cells in your spinal cord. How do your  brain stem and spinal cord help your body process the senses?

  1. Nicholas J. Strausfeld, Xianguang Hou, Marcel E. Sayre, Frank Hirth. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brainsScience, 2022; 378 (6622): 905 DOI: 10.1126/science.abn6264
  2. Turecek, J., Lehnert, B.P. & Ginty, D.D. The encoding of touch by somatotopically aligned dorsal column subdivisionsNature, 2022 DOI: 10.1038/s41586-022-05470-x
  3. Anda M. Chirila, Genelle Rankin, Shih-Yi Tseng, Alan J. Emanuel, Carmine L. Chavez-Martinez, Dawei Zhang, Christopher D. Harvey, David D. Ginty. Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brainCell, 2022; 185 (24): 4541 DOI: 10.1016/j.cell.2022.10.012
November 21, 2022

Episode 510 - Fungi spreading across the planet and wiping out toxic soils

Fungi have an amazing ability to spread across continents but stay linked as a family lineage. Fungi can adapt to specific geographic niches in the same way as grapes. Different families of highly specialized mushrooms grow side by side across continents. How can fungi protect the plants it's attached to? Fungi often get a bad rap in farming, but they can be used to detoxify soils. Removing mercury and boosting crops; is there anything fungi can't do?

  1. Keaton Tremble, J. I. Hoffman, Bryn T. M. Dentinger. Contrasting continental patterns of adaptive population divergence in the holarctic ectomycorrhizal fungus Boletus edulis. New Phytologist, 2022; DOI: 10.1111/nph.18521
  2. Congcong Wu, Dan Tang, Jin Dai, Xingyuan Tang, Yuting Bao, Jiali Ning, Qing Zhen, Hui Song, Raymond J. St. Leger, Weiguo Fang. Bioremediation of mercury-polluted soil and water by the plant symbiotic fungus Metarhizium robertsii. Proceedings of the National Academy of Sciences, 2022; 119 (47) DOI: 10.1073/pnas.2214513119
November 14, 2022

Episode 509 - What connects spicy food, proteins and your gut

How is your gut connected to the rest of your body? How does your nervous system connect to your gut? How can you sense pain inside of your gut? The bacteria that live inside your gut can call for help when under pressure. With the wrong balance of bacteria or signalling proteins our guts can be more prone for inflammation and damage. How can bad bacteria escape from the gut and evade detection? What enables some bacteria to sneak out of the intestine and wreck havoc.

  1. Wen Zhang, Mengze Lyu, Nicholas J. Bessman, Zili Xie, Mohammad Arifuzzaman, Hiroshi Yano, Christopher N. Parkhurst, Coco Chu, Lei Zhou, Gregory G. Putzel, Ting-Ting Li, Wen-Bing Jin, Jordan Zhou, Hongzhen Hu, Amy M. Tsou, Chun-Jun Guo, David Artis. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protectionCell, 2022; DOI: 10.1016/j.cell.2022.09.008
  2. Yusibeska Ramos, Stephanie Sansone, Sung-Min Hwang, Tito A. Sandoval, Mengmeng Zhu, Guoan Zhang, Juan R. Cubillos-Ruiz, Diana K. Morales. Remodeling of the Enterococcal Cell Envelope during Surface Penetration Promotes Intrinsic Resistance to StressmBio, 2022; DOI: 10.1128/mbio.02294-22
November 7, 2022

Episode 508 - Finding your way as a fish along rivers and into the deep

How can fish keep themselves stable in a fast flowing river? What's the best way to stay on track as a fish? To swim straight ahead fish often end up staring downwards. The riverbed is way easier to track than a fast flowing current. How did fish manage to make their way into the deepest parts of the ocean? What climatic factors drove fish to explore deeper and deeper? What changed in Earth's history to encourage fish to thrive in the deepest parts of oceans?

  1. Emma Alexander, Lanya T. Cai, Sabrina Fuchs, Tim C. Hladnik, Yue Zhang, Venkatesh Subramanian, Nicholas C. Guilbeault, Chinnian Vijayakumar, Muthukumarasamy Arunachalam, Scott A. Juntti, Tod R. Thiele, Aristides B. Arrenberg, Emily A. Cooper. Optic flow in the natural habitats of zebrafish supports spatial biases in visual self-motion estimationCurrent Biology, 2022; DOI: 10.1016/j.cub.2022.10.009
  2. Elizabeth Christina Miller, Christopher M. Martinez, Sarah T. Friedman, Peter C. Wainwright, Samantha A. Price, Luke Tornabene. Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishesProceedings of the National Academy of Sciences, 2022; 119 (43) DOI: 10.1073/pnas.2123544119
October 24, 2022

Episode 506 - Assimilating all microbes in it’s path to chow down on Methane

How have microbes changed the course of life on our planet? How has our atmosphere changed as a result of bacteria and archaea? Assimilation can help enhance single cellular life. Archaea can collect long strings of extra genes just in case. Finding the right gene at the right moment can help Archaea make the most of available food.

  1. Basem Al-Shayeb, Marie C. Schoelmerich, Jacob West-Roberts, Luis E. Valentin-Alvarado, Rohan Sachdeva, Susan Mullen, Alexander Crits-Christoph, Michael J. Wilkins, Kenneth H. Williams, Jennifer A. Doudna, Jillian F. Banfield. Borgs are giant genetic elements with potential to expand metabolic capacityNature, 2022; DOI: 10.1038/s41586-022-05256-1
October 17, 2022

Episode 505 - Complex ocean currents sustaining life across the depths

Ocean currents can have global impacts shaping our climate and life in the seas and onshore. How do the ocean currents circulate and vary not just on the surface but beneath the waves? It's easy to picture different layers of clouds, but the same is true for our oceans. Large circulating patterns of currents called Gyres govern the oceans. Tiny phytoplankton keep our oceans alive but how do they get enough food themselves? The middle of a gyre gets baked in sun and seems to lack nutrient sources, so how do microbes survive there? When phytoplankton die they rain down nutrients and carbon to lower layers of the ocean as marine snow.

  1. Mukund Gupta, Richard G. Williams, Jonathan M. Lauderdale, Oliver Jahn, Christopher Hill, Stephanie Dutkiewicz, Michael J. Follows. A nutrient relay sustains subtropical ocean productivityProceedings of the National Academy of Sciences, 2022; 119 (41) DOI: 10.1073/pnas.2206504119
October 10, 2022

Episode 504 - Looking inside living cells with Bioorthogonal chemistry

A big prize like the Nobel for Chemistry doesn't appear out of nowhere. To win a Nobel Prize, a lot of team work in laboratories and across the world has to come together. We find out about the research that led towards the Nobel Prize for chemistry and how it grew. How does Click Chemistry solve the problem of messy and complicated reactions? How do you look inside a cell when it's working without destroying it? How can you get precise tracking of cells behavior using Bioorthogonal chemistry.

  1. Castelvecchi, D. and Ledford, H., 2022. Chemists who invented revolutionary ‘click’ reactions win Nobel. [online] Nature.com. Available at: <https://www.nature.com/articles/d41586-022-03087-8> [Accessed 8 October 2022].
  2. Ramström, O., 2022. CLICK CHEMISTRY A N D BIOORTHOGONAL CHEMISTRY. [online] Nobelprize.org. Available at: <https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf> [Accessed 8 October 2022].
  3. Zhang, H., 2022. Nobel Prize: How click chemistry and bioorthogonal chemistry are transforming the pharmaceutical and material industries. [online] The Conversation. Available at: <https://theconversation.com/nobel-prize-how-click-chemistry-and-bioorthogonal-chemistry-are-transforming-the-pharmaceutical-and-material-industries-191995> [Accessed 8 October 2022].
October 3, 2022

Episode 503 - Blending nanotubes and living cells

September 26, 2022

Episode 502 - Ignobel prizes ’22 - Blind dates and Mother Ducks

We celebrate the Ignobel prizes for 2022 with science that makes you laugh and then think. What connects a Fish, ducks and slipstream racing? How do mother ducks manage to keep all their ducklings in tow? Does swimming in formation help the ducks save energy? What's the best spot in the slipstream to be? We all know following in the slipstream is good, but if you're 3 or more back you can literally get pulled along. Complex fluid mechanics makes swimming in a line a way for a mother duck to pull the ducklings along. What happens physically when you find someone who is a good match? Is eye contact or heart rate a better measure of having  a 'spark' with someone new?

  1. Wave-Riding and Wave-Passing by Ducklings in Formation Swimming,” Zhi-Ming Yuan, Minglu Chen, Laibing Jia, Chunyan Ji, and Atilla Incecik, Journal of Fluid Mechanics, vol. 928, no. R2, 2021.
  2. “Energy Conservation by Formation Swimming: Metabolic Evidence from Ducklings,” Frank E. Fish, in the book Mechanics and Physiology of Animal Swimming, 1994, pp. 193-204.
  3. Physiological Synchrony is Associated with Attraction in a Blind Date Setting,” Eliska Prochazkova, Elio Sjak-Shie, Friederike Behrens, Daniel Lindh, and Mariska E. Kret, Nature Human Behaviour, vol. 6, no. 2, 2022, pp. 269-278.
September 20, 2022

Episode 501 - The journey of the mandarin

Mandarin oranges are very closely related but also incredibly diverse. A quirk of cloning means we can accurately trace the journey of all mandarins back to their origins in Hunan province. Mandarins come in so many shapes and sizes and are used to celebrate by many cultures, but they all share a lot in common. Oregano and Thyme both produce some great smells, but these chemicals can carry a useful punch. How do Oregano and Thyme produce chemicals with antibacterial properties?

  1. Sandra T. Krause, Pan Liao, Christoph Crocoll, Benoît Boachon, Christiane Förster, Franziska Leidecker, Natalie Wiese, Dongyan Zhao, Joshua C. Wood, C. Robin Buell, Jonathan Gershenzon, Natalia Dudareva, Jörg Degenhardt. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenaseProceedings of the National Academy of Sciences, 2021; 118 (52): e2110092118 DOI: 10.1073/pnas.2110092118
  2. Guohong Albert Wu, Chikatoshi Sugimoto, Hideyasu Kinjo, Chika Azama, Fumimasa Mitsube, Manuel Talon, Frederick G. Gmitter, Daniel S. Rokhsar. Diversification of mandarin citrus by hybrid speciation and apomixisNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-24653-0
September 12, 2022

Episode 500 - Forest helping pump water and create rain

Plants harness the energy from the sun for so much more than photosynthesis. You have a beating hart to pump around your blood, but what do plants. Plants' vascular systems aren't pressurized so how do they power their circulation? Just how much energy do plants use globally each year to pump water out of the ground and into their leaves? Plants use incredible amounts of energy each year just to pump water out of the ground into their leaves. The fresh scents of plants are organic compounds that can reveal a lot about a plants condition. The scents of plants can play a role in influencing the climate around them. 

  1. Gregory R. Quetin, Leander D. L. Anderegg, Alexandra G. Konings, Anna T. Trugman. Quantifying the Global Power Needed for Sap Ascent in PlantsJournal of Geophysical Research: Biogeosciences, 2022; 127 (8) DOI: 10.1029/2022JG006922
  2. Joseph Byron, Juergen Kreuzwieser, Gemma Purser, Joost van Haren, S. Nemiah Ladd, Laura K. Meredith, Christiane Werner, Jonathan Williams. Chiral monoterpenes reveal forest emission mechanisms and drought responsesNature, 2022; 609 (7926): 307 DOI: 10.1038/s41586-022-05020-5
August 29, 2022

Episode 498 - Proteins, MRNA and fighting back against cancer

How can we develop new treatments to tackle antibiotic resistance and tumors. Antibiotics were the miracle of public health in the 20th century, but how can we establish new treatments into the 21st. Find the right protein and you can stop bacteria in its tracks by splitting it in two. New treatments can tackle antibiotic resistant bacteria by using proteins to break them in two. Cancer vaccines are benefiting from the mRNA revolution. A challenge with vaccines is that they can end up in the liver, so how do you get them to  deliver their instructions more effectively. Using special lipid nano particles, cancer mRNA vaccines can target the lymph nodes making for more powerful vaccines.

  1. Shouya Feng, Daniel Enosi Tuipulotu, Abhimanu Pandey, Weidong Jing, Cheng Shen, Chinh Ngo, Melkamu B. Tessema, Fei-Ju Li, Daniel Fox, Anukriti Mathur, Anyang Zhao, Runli Wang, Klaus Pfeffer, Daniel Degrandi, Masahiro Yamamoto, Patrick C. Reading, Gaetan Burgio, Si Ming Man. Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-32127-0
  2. Jinjin Chen, Zhongfeng Ye, Changfeng Huang, Min Qiu, Donghui Song, Yamin Li, Qiaobing Xu. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response. Proceedings of the National Academy of Sciences, 2022; 119 (34) DOI: 10.1073/pnas.2207841119
August 22, 2022

Episode 497 - Wearable med-tech inside and out

Wearable medical devices inside and outside of your body. Understanding what's happening inside your body can be tricky. Lugging around a scanning device with you all day isn't practical, but how can doctors tell what's happening in your daily life? Want to know what your organs are doing when you go for a jog or live your daily life? Wearable ultrasonic patches can give precise and long term ultrasounds making precise medicine possible. Stimulating nerves is a useful treatment for some conditions like Parkinson's or epilepsy but are very invasive. How can you use magnets to make these treatments much more friendly.

  1. Chonghe Wang, Xiaoyu Chen, Liu Wang, Mitsutoshi Makihata, Hsiao-Chuan Liu, Tao Zhou, Xuanhe Zhao. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science, 2022; 377 (6605): 517 DOI: 10.1126/science.abo2542
  2. Joshua C. Chen, Peter Kan, Zhanghao Yu, Fatima Alrashdan, Roberto Garcia, Amanda Singer, C. S. Edwin Lai, Ben Avants, Scott Crosby, Zhongxi Li, Boshuo Wang, Michelle M. Felicella, Ariadna Robledo, Angel V. Peterchev, Stefan M. Goetz, Jeffrey D. Hartgerink, Sunil A. Sheth, Kaiyuan Yang, Jacob T. Robinson. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nature Biomedical Engineering, 2022; DOI: 10.1038/s41551-022-00873-7
August 8, 2022

Episode 495 - Plants without sunlight and electricity from sweat

How can we take ideas from nature and turn them upside down like growing plants without sunlight. There are some plants that thrive in 'low light' but what if they needed no light? Is it possible to change photosynthesis to work even without sunlight? Photosynthesis is great and all, but it's only around 1% efficient, so can it be improved? IF you were to make artificial photosynthesis can it outperform good ol natural sunlight? Biofilms are often the scourge of wearable devices, but what if they could help generate power? Turning sweat into electricity with bacteria could power your wearable devices.

  1. Elizabeth C. Hann, Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao, Robert E. Jinkerson. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food, 2022; 3 (6): 461 DOI: 10.1038/s43016-022-00530-x
  2. Elizabeth C. Hann, Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao, Robert E. Jinkerson. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nature Food, 2022; 3 (6): 461 DOI: 10.1038/s43016-022-00530-x
August 1, 2022

Episode 494 - Mass extinctions and recovery in our oceans

What happens when most life in the ocean just dies off? Our oceans have seen many mass extinctions in the past, how long does it take to recover? What happened at the end of the Permian that caused massive extinctions in the ocean? What creatures were best able to survive when 80% of the rest of life in the ocean died? Burrowing and feeding on mud at the ocean depths helped soft bodied creatures survive a mass extinction. What lurked in the north Pacific that heated up the oceans? What was 'The Blob' and how were seals able to uncover it's secrets in the North pacific?

  1. Xueqian Feng, Zhong-Qiang Chen, Michael J. Benton, Chunmei Su, David J. Bottjer, Alison T. Cribb, Ziheng Li, Laishi Zhao, Guangyou Zhu, Yuangeng Huang, Zhen Guo. Resilience of infaunal ecosystems during the Early Triassic greenhouse EarthScience Advances, 2022; 8 (26) DOI: 10.1126/sciadv.abo0597
  2. Rachel R. Holser, Theresa R. Keates, Daniel P. Costa, Christopher A. Edwards. Extent and Magnitude of Subsurface Anomalies During the Northeast Pacific Blob as Measured by Animal‐Borne SensorsJournal of Geophysical Research: Oceans, 2022; 127 (7) DOI: 10.1029/2021JC018356
July 25, 2022

Episode 493 - Pleasant memories of sound and music relieving pain

There are plenty of tales of music soothing wild beasts, but is there actually a link between music and pain relief? How did researchers quantitatively study the soothing powers of music? What's better for blocking out pain ; Classical music, discordant arrangements or white noise? How does sound dull the effect of pain in mice? Just how good is a bat's auditory long term memory? can you train a bat to recognize the sound of a tasty treat? How do bats process and associate sounds with food?

  1. Wenjie Zhou, Chonghuan Ye, Haitao Wang, Yu Mao, Weijia Zhang, An Liu, Chen-Ling Yang, Tianming Li, Lauren Hayashi, Wan Zhao, Lin Chen, Yuanyuan Liu, Wenjuan Tao, Zhi Zhang. Sound induces analgesia through corticothalamic circuits. Science, 2022; 377 (6602): 198 DOI: 10.1126/science.abn4663
  2. M. May Dixon, Patricia L. Jones, Michael J. Ryan, Gerald G. Carter, Rachel A. Page. Long-term memory in frog-eating bats. Current Biology, 2022; 32 (12): R557 DOI: 10.1016/j.cub.2022.05.031
July 4, 2022

Episode 490 - The history of fire on Earth

The history of fire on earth from the first wildfires to the first use to cook. We all know you need fuel and oxygen for fire, but when did the first fires occur on Earth. When did the first wild fires occur on earth? What was there to burn on early Earth if there weren't any large trees or plants? Giant mushrooms and large fields of moss, early Earth was very different but it could still have wildfires. When did the first hominids use fire as a tool? How can we identify if something that was burn was done so deliberately or accidentally. We know at some point hominids used fire as a tool, but when exactly -  200,500 800 million years ago?

  1. Zane Stepka, Ido Azuri, Liora Kolska Horwitz, Michael Chazan, Filipe Natalio. Hidden signatures of early fire at Evron Quarry (1.0 to 0.8 Mya)Proceedings of the National Academy of Sciences, 2022; 119 (25) DOI: 10.1073/pnas.2123439119
  2. Ian J. Glasspool, Robert A. Gastaldo. Silurian wildfire proxies and atmospheric oxygenGeology, 2022; DOI: 10.1130/G50193.1
June 14, 2022

Episode 487 - Feeding the planet without damaging it

​As our climate changes, feeding the planet without making things worse is a big challenge. How do plants work together to survive extreme weather events? When there is a large drought or extreme weather event what works better, single species or mixed? Plant diversity can help plants weather the storm of climate change and come out stronger. How do cover crops help 'fix' nitrogen in the soil and reduce negative climate impacts. Excess fertiliser is not only expensive for farmers but damaging to the local and global environment. How can cover crops help soil recover and reduce negative climate change impacts of mono cropping. 

  1. Yuxin Chen, Anja Vogel, Cameron Wagg, Tianyang Xu, Maitane Iturrate-Garcia, Michael Scherer-Lorenzen, Alexandra Weigelt, Nico Eisenhauer, Bernhard Schmid. Drought-exposure history increases complementarity between plant species in response to a subsequent droughtNature Communications, 2022; 13 (1) DOI: 10.1038/s41467-022-30954-9
  2. Nakian Kim, Chance W. Riggins, María C. Zabaloy, Marco Allegrini, Sandra L. Rodriguez-Zas, María B. Villamil. High-Resolution Indicators of Soil Microbial Responses to N Fertilization and Cover Cropping in Corn MonoculturesAgronomy, 2022; 12 (4): 954 DOI: 10.3390/agronomy12040954
  3. Nakian Kim, Chance Riggins, María C. Zabaloy, Sandra Rodriguez-Zas and María B. Villamil. Limited impacts of cover cropping on soil N-cycling microbial communities of long-term corn monoculturesFrontiers in Microbiology, 2022 DOI: 10.3389/fmicb.2022.926592
June 7, 2022

Episode 486 - Bypassing the brains defences for treatment

The brain is incredibly important and needs to be protected by your body but this also makes it hard to treat. Brain tumours can be stubborn to root out because many treatments are blocked by the blood brain barrier. The blood brain barrier blocks many cancer treatments, but with the right disguise and nano coating cancer treatments can sneak past. Brain tumours can block the immune system from functioning, but sneaking through the right treatment can help the immune system fight back. Traumatic brain injury and subsequent inflammation can lead to significant damage, and normal anti-inflammatory methods are blocked by the blood brain barrier. If you can't sneak anti-inflammatories through the blood brain barrier, why not just boost their production locally? T Cells can fight back against inflammation after a traumatic brain injury if there's enough food for them to thrive on. 

  1. Yshii, L., Pasciuto, E., Bielefeld, P. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammationNat Immunol, 2022 DOI: 10.1038/s41590-022-01208-z
  2. Mahmoud S. Alghamri, Kaushik Banerjee, Anzar A. Mujeeb, Ava Mauser, Ayman Taher, Rohit Thalla, Brandon L. McClellan, Maria L. Varela, Svetlana M. Stamatovic, Gabriela Martinez-Revollar, Anuska V. Andjelkovic, Jason V. Gregory, Padma Kadiyala, Alexandra Calinescu, Jennifer A. Jiménez, April A. Apfelbaum, Elizabeth R. Lawlor, Stephen Carney, Andrea Comba, Syed Mohd Faisal, Marcus Barissi, Marta B. Edwards, Henry Appelman, Yilun Sun, Jingyao Gan, Rose Ackermann, Anna Schwendeman, Marianela Candolfi, Michael R. Olin, Joerg Lahann, Pedro R. Lowenstein, Maria G. Castro. Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma ImmunotherapyACS Nano, 2022; DOI: 10.1021/acsnano.1c07492
May 30, 2022

Episode 485 - Plants race against rising sea levels

How can plants adapt to a changing climate and strange volcanic soils. By tracking the divergent evolution of Thale Cress, scientists can track the genetic changes needed to thrive in weird soil. Volcanic soil can have benefits along with risks, but how can plants adapt quickly to odd soil types? How did plants learn to thrive on a volcanic island, Pico de Fogo. What can a long running study tell us about plants adapting to a changing climate. Extra CO2 is good for plants...to up to a point. For plants in wetlands its a race between rising sea levels and extra CO2. 

  1. Emmanuel Tergemina, Ahmed F. Elfarargi, Paulina Flis, Andrea Fulgione, Mehmet Göktay, Célia Neto, Marleen Scholle, Pádraic J. Flood, Sophie-Asako Xerri, Johan Zicola, Nina Döring, Herculano Dinis, Ute Krämer, David E. Salt, Angela M. Hancock. A two-step adaptive walk rewires nutrient transport in a challenging edaphic environmentScience Advances, 2022; 8 (20) DOI: 10.1126/sciadv.abm9385
  2. Chunwu Zhu, J. Adam Langley, Lewis H. Ziska, Donald R. Cahoon, J. Patrick Megonigal. Accelerated sea-level rise is suppressing CO 2 stimulation of tidal marsh productivity: A 33-year studyScience Advances, 2022; 8 (20) DOI: 10.1126/sciadv.abn0054