Loading Downloads
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

May 2, 2022

Episode 481 - Finding hidden life in our oceans with RNA and DNA

Using sequencing techniques we can find all kinds of hidden life in our oceans. RNA viruses are ancient, but their old genes can help us spot them in great numbers in our oceans. There are huge amounts of 'life' in our oceans that we don't know about. No matter if you think viruses are 'alive' or not, there are way more than we imagined in our oceans. RNA viruses are easier to spot in our oceans if you look for the right ancient gene. Using gene sequencing we can find fish that are hidden in our reefs. Visually spotting fish is helpful but can overlook sneak fish. Using environemtnal sequencing techniques way more diverse range of fish can be found.

  1. Ahmed A. Zayed, James M. Wainaina, Guillermo Dominguez-Huerta, Eric Pelletier, Jiarong Guo, Mohamed Mohssen, Funing Tian, Akbar Adjie Pratama, Benjamin Bolduc, Olivier Zablocki, Dylan Cronin, Lindsey Solden, Erwan Delage, Adriana Alberti, Jean-Marc Aury, Quentin Carradec, Corinne da Silva, Karine Labadie, Julie Poulain, Hans-Joachim Ruscheweyh, Guillem Salazar, Elan Shatoff, Ralf Bundschuh, Kurt Fredrick, Laura S. Kubatko, Samuel Chaffron, Alexander I. Culley, Shinichi Sunagawa, Jens H. Kuhn, Patrick Wincker, Matthew B. Sullivan, Silvia G. Acinas, Marcel Babin, Peer Bork, Emmanuel Boss, Chris Bowler, Guy Cochrane, Colomban de Vargas, Gabriel Gorsky, Lionel Guidi, Nigel Grimsley, Pascal Hingamp, Daniele Iudicone, Olivier Jaillon, Stefanie Kandels, Lee Karp-Boss, Eric Karsenti, Fabrice Not, Hiroyuki Ogata, Nicole Poulton, Stéphane Pesant, Christian Sardet, Sabrinia Speich, Lars Stemmann, Matthew B. Sullivan, Shinichi Sungawa, Patrick Wincker. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA viromeScience, 2022; 376 (6589): 156 DOI: 10.1126/science.abm5847
  2. Laetitia Mathon, Virginie Marques, David Mouillot, Camille Albouy, Marco Andrello, Florian Baletaud, Giomar H. Borrero-Pérez, Tony Dejean, Graham J. Edgar, Jonathan Grondin, Pierre-Edouard Guerin, Régis Hocdé, Jean-Baptiste Juhel, Kadarusman, Eva Maire, Gael Mariani, Matthew McLean, Andrea Polanco F., Laurent Pouyaud, Rick D. Stuart-Smith, Hagi Yulia Sugeha, Alice Valentini, Laurent Vigliola, Indra B. Vimono, Loïc Pellissier, Stéphanie Manel. Cross-ocean patterns and processes in fish biodiversity on coral reefs through the lens of eDNA metabarcodingProceedings of the Royal Society B: Biological Sciences, 2022; 289 (1973) DOI: 10.1098/rspb.2022.0162
April 25, 2022

Episode 480 - Bacteria turning methane into electricity, and corrupting corn

How can bacteria turn methane directly into electricity? Why waste time producing bio gas to burn when bacteria could produce electricity directly.  When bacteria take over corn, before they wreck the join they order in delivered food. Bacteria enjoy a huge feast when taking over maize, then they get to work wrecking the joint. Bacteria ends up in spots its not meant to be and redirects food away from plant cells. Redirected takeout food keeps bacteria alive as they settle into their corn host in preparation for taking over. When moving into a new house it helps to get food delivered at first, which is exactly what bacteria does.

  1. Heleen T. Ouboter, Tom Berben, Stefanie Berger, Mike S. M. Jetten, Tom Sleutels, Annemiek Ter Heijne, Cornelia U. Welte. Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph “Candidatus Methanoperedens”. Frontiers in Microbiology, 2022; 13 DOI: 10.3389/fmicb.2022.820989
  2. Irene Gentzel, Laura Giese, Gayani Ekanayake, Kelly Mikhail, Wanying Zhao, Jean-Christophe Cocuron, Ana Paula Alonso, David Mackey. Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host & Microbe, 2022; 30 (4): 502 DOI: 10.1016/j.chom.2022.03.017
April 18, 2022

Episode 479 - Fish that count and Spiders hearing with their webs

Can fish count? What purpose does a stingray have with addition and subtraction? Why are fish and stingrays able to do basic arithmetic without a cerebral cortex? Scientists taught fish to do arithmetic with some help from Bees. What happens with you put a spider web in an anechoic chamber? How do spiders tune their webs to detect sound? Spiders webs act as powerful microphone arrays that are also cable of carrying sound across long distances. Spider webs make powerful microphone arrays that allow spiders to hear great with great fidelity.

  1. V. Schluessel, N. Kreuter, I. M. Gosemann, E. Schmidt. Cichlids and stingrays can add and subtract ‘one’ in the number space from one to fiveScientific Reports, 2022; 12 (1) DOI: 10.1038/s41598-022-07552-2
  2. Jian Zhou, Junpeng Lai, Gil Menda, Jay A. Stafstrom, Carol I. Miles, Ronald R. Hoy, Ronald N. Miles. Outsourced hearing in an orb-weaving spider that uses its web as an auditory sensorProceedings of the National Academy of Sciences, 2022; 119 (14) DOI: 10.1073/pnas.2122789119
April 4, 2022

Episode 477 - Plants reacting and defending themselves

How can plants defend themselves from attack? Animals scatter when they hear an alarm cry or a predator, but how do plants defend themselves? Plants react to danger around them by detecting chemical signals. Plants emit warning through volatile chemicals and others detect these signals to raise their own defences. How do plants detect light and know where to head without eyes? How do the shape of proteins that bend a plant towards like change when exposed to different light?

  1. Haruki Onosato, Genya Fujimoto, Tomota Higami, Takuya Sakamoto, Ayaka Yamada, Takamasa Suzuki, Rika Ozawa, Sachihiro Matsunaga, Motoaki Seki, Minoru Ueda, Kaori Sako, Ivan Galis, Gen-ichiro Arimura. Sustained defense response via volatile signaling and its epigenetic transcriptional regulationPlant Physiology, 2022; DOI: 10.1093/plphys/kiac077
  2. Li, H., Burgie, E.S., Gannam, Z.T.K. et al. Plant phytochrome B is an asymmetric dimer with unique signalling potentialNature, 2022 DOI: 10.1038/s41586-022-04529-z
March 21, 2022

Episode 475 - Tarantula eating worms and Panda’s helpful bacteria

Tarantulas are often in horror films, but they too can be subject to a mysterious invasion and slow death by nasty nematodes. "In Hollywood, you haven't really made it until you've been recognized by those in the field of parasitology" says Jeff Daniels. Why did scientists immortalize Jeff Daniels in the name of a deadly nematode. Slowly loosing control of limbs and organs is a nasty way to go out, but its how nematodes can take down a tarantula. Panda's get a lot of help from bacteria to help them survive with their limited diet. Pandas need a lot of help to survive even though they only eat bamboo. Gut bacteria helps pandas turn their bamboo into all the energy they need to build mass and fat.

  1. Jacob Schurkman, Kyle Anesko; Joaquín Abolafia; Irma Tandingan De Ley; Adler R. Dillman. Tarantobelus Jeffdanielsi N. Sp. (panagrolaimomorpha; Panagrolaimidae), a Nematode Parasite of TarantulasJ Parasitol, 2022 DOI: 10.1645/21-42
  2. Guangping Huang, Le Wang, Jian Li, Rong Hou, Meng Wang, Zhilin Wang, Qingyue Qu, Wenliang Zhou, Yonggang Nie, Yibo Hu, Yingjie Ma, Li Yan, Hong Wei, Fuwen Wei. Seasonal shift of the gut microbiome synchronizes host peripheral circadian rhythm for physiological adaptation to a low-fat diet in the giant pandaCell Reports, 2022; 38 (3): 110203 DOI: 10.1016/j.celrep.2021.110203
March 14, 2022

Episode 474 - Fossils changing the Planet and the planet changing Fossils

How can fossils change the planet and the planet change fossils? Forming fossils require specific set of circumstances. How can geological changes make the right conditions for fossils to be preserved? What happened 183 million years ago that made it possible to preserve even soft and delicate fossils? Preserving bones is comparatively easy compared to soft tissue and creatures like squid. So what has to happen to preserve these as fossils? How did fossils change the composition of rocks deep in the mantle? When life first emerged on our planet what change did it cause in the type of rocks found deep beneath the surface? life on the surface has changed the rocks we have deep in the earth.

  1. Sinjini Sinha, A. D. Muscente, James D. Schiffbauer, Matt Williams, Günter Schweigert, Rowan C. Martindale. Global controls on phosphatization of fossils during the Toarcian Oceanic Anoxic EventScientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-03482-7
  2. Alcott, L.J., Mills, B.J.W., Bekker, A. et al. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recyclingNat. Geosci., 2022 DOI: 10.1038/s41561-022-00906-5
March 7, 2022

Episode 473 - Super materials from Molluscs and Scallops

Making super materials by learning the secrets of molluscs and scallops. How are scallops are able to survive the super-cool water in Antarctica. What makes Antarctic scallop shells able to simply brush aside ice? How do you shed a skin of ice from a scallop? What connects scallops with making airplanes more efficient? How do mussels manage to stick so well to things? Is it possible to replicate the stickiness of a mussel? Mussels make themselves near impossible to remove, so can you make them even stickier?

  1. William S. Y. Wong, Lukas Hauer, Paul A. Cziko, Konrad Meister. Cryofouling avoidance in the Antarctic scallop Adamussium colbecki. Communications Biology, 2022; 5 (1) DOI: 10.1038/s42003-022-03023-6
  2. Or Berger, Claudia Battistella, Yusu Chen, Julia Oktawiec, Zofia E. Siwicka, Danielle Tullman-Ercek, Muzhou Wang, Nathan C. Gianneschi. Mussel Adhesive-Inspired Proteomimetic Polymer. Journal of the American Chemical Society, 2022; DOI: 10.1021/jacs.1c10936
February 28, 2022

Episode 472 - March Mammal Madness 22 - Long lasting Leaf slugs

We give a rundown on the 10th annual March Mammal Madness, including the details of the brackets and an explanation on how it all works. More information about March Mammal Madness '22 can be found at the following sites:

One of the #2022MMM creatures, the Leaf Slug can go for long periods without food. Will the Leaf Slug's ability to eat and photosynthesize allow it to conquer #2022MMM? We dive into how leaf slugs manage to survive for so long without food #2022MMM. If you eat a leaf why doesn't that turn you INTO a leaf? How are Leaf Slugs managing to sneak out extra food for months after eating some algae? Forget emergency rations, Leaf Slugs can (solar) power on through long periods without food. How can Leaf Slugs avoid the Nitrogen trap and have a balanced diet for long periods without food.

February 7, 2022

Episode 469 - Creatures with giant mouths and giant eyes

Giant mouths and giant eyes may look cute, but they give some serious advantages when eating. How do whales manage to gulp so much water to feed without drowning? Lunge feeding where whales swallow huge volumes of water is a fast way to eat but how do whales avoid drowning? Whales and humans share some special developments to stop food (or water) going down the wrong way. Would it be possible for humans to eat underwater like a whale? How do large eyes help a creature? A creature that invests in overly large eyes must have some advantage from them. A cartoony crab with huge eyes was actually a pretty fast predator.

  1. Kelsey N. Gil, A. Wayne Vogl, Robert E. Shadwick. Anatomical mechanism for protecting the airway in the largest animals on earthCurrent Biology, 2022; DOI: 10.1016/j.cub.2021.12.040
  2. Kelsey M. Jenkins, Derek E.G. Briggs, Javier Luque. The remarkable visual system of a Cretaceous crabiScience, 2022; 25 (1): 103579 DOI: 10.1016/j.isci.2021.103579
January 24, 2022

Episode 467 - Repairing throats and better implants

How can we make stronger implants that don't get rejected by the body? Bioactive materials can help make implants feel more at home. Replacing a knee or a hip requires not just strength but also compatibility. A new coating method makes it easier for implants to fit in. An implant has to be strong yet flexible, friendly to cells but not bacteria - it's challenging. Your vocal chords are subject to extreme forces, so how can we design an implant to repair them? Hydro-gels can help repair damaged organs and tissue even in extreme environments like your vocal chods.

  1. Imran Deen, Gurpreet Singh Selopal, Zhiming M. Wang, Federico Rosei. Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implantsJournal of Colloid and Interface Science, 2022; 607: 869 DOI: 10.1016/j.jcis.2021.08.199
  2. Sareh Taheri, Guangyu Bao, Zixin He, Sepideh Mohammadi, Hossein Ravanbakhsh, Larry Lessard, Jianyu Li, Luc Mongeau. Injectable, Pore‐Forming, Perfusable Double‐Network Hydrogels Resilient to Extreme Biomechanical StimulationsAdvanced Science, 2021; 2102627 DOI: 10.1002/advs.202102627
January 10, 2022

Episode 465 - Hedgehogs to mouthwash - Strange tales of the war against bacteria

From Hedgehogs to mouthwash, we check in on the arms race against bacteria. MRSA super-bugs are a super problem for humans, but some pre-date the modern era. MRSA super-bugs have been around since the Industrial revolution, at least on hedgehogs. The skin of hedgehogs is a battlefield between Fungus and Bacteria, and whoever wins, we loose. We often focus on Humans vs Bacteria, but it's actually a triple threat with Fungus. The fight Fungus vs Bacteria can lead to the development of antibiotic resistance. The mouth is the gate in the castle like defenses of the human immune system, so what defends it from bacteria attackers? If you have periodontal disease, it can make it easier for other viruses to get into your body. Keeping your mouth free of bacteria plaque can keep your defense against other infections high.

  1. Jesper Larsen, Claire L. Raisen, Xiaoliang Ba, Nicholas J. Sadgrove, Guillermo F. Padilla-González, Monique S. J. Simmonds, Igor Loncaric, Heidrun Kerschner, Petra Apfalter, Rainer Hartl, Ariane Deplano, Stien Vandendriessche, Barbora Černá Bolfíková, Pavel Hulva, Maiken C. Arendrup, Rasmus K. Hare, Céline Barnadas, Marc Stegger, Raphael N. Sieber, Robert L. Skov, Andreas Petersen, Øystein Angen, Sophie L. Rasmussen, Carmen Espinosa-Gongora, Frank M. Aarestrup, Laura J. Lindholm, Suvi M. Nykäsenoja, Frederic Laurent, Karsten Becker, Birgit Walther, Corinna Kehrenberg, Christiane Cuny, Franziska Layer, Guido Werner, Wolfgang Witte, Ivonne Stamm, Paolo Moroni, Hannah J. Jørgensen, Hermínia de Lencastre, Emilia Cercenado, Fernando García-Garrote, Stefan Börjesson, Sara Hæggman, Vincent Perreten, Christopher J. Teale, Andrew S. Waller, Bruno Pichon, Martin D. Curran, Matthew J. Ellington, John J. Welch, Sharon J. Peacock, David J. Seilly, Fiona J. E. Morgan, Julian Parkhill, Nazreen F. Hadjirin, Jodi A. Lindsay, Matthew T. G. Holden, Giles F. Edwards, Geoffrey Foster, Gavin K. Paterson, Xavier Didelot, Mark A. Holmes, Ewan M. Harrison, Anders R. Larsen. Emergence of methicillin resistance predates the clinical use of antibioticsNature, 2022; DOI: 10.1038/s41586-021-04265-w
  2. Carlos J. Rodriguez-Hernandez, Kevin J. Sokoloski, Kendall S. Stocke, Himabindu Dukka, Shunying Jin, Melissa A. Metzler, Konstantin Zaitsev, Boris Shpak, Daonan Shen, Daniel P. Miller, Maxim N. Artyomov, Richard J. Lamont, Juhi Bagaitkar. Microbiome-mediated incapacitation of interferon lambda production in the oral mucosaProceedings of the National Academy of Sciences, 2021; 118 (51): e2105170118 DOI: 10.1073/pnas.2105170118
December 27, 2021

Episode 463 - Unlocking former junk DNA in Rice to feed the planet

How was rice turned from a wild grass into a staple crop for over 3 billion people? What secrets are lurking in the 'junk' DNA of rice that can explain it's transformation? What parts of the rice genome have been long overlooked? Can non protein coding parts of a genome help define important traits for plants and animals? Proteins aren't everything; unlocking the secrets of the rice genome.  How can we boost rice yields and rice bran oil content?

  1. X. M. Zheng, J. Chen, H. B. Pang, S. Liu, Q. Gao, J. R. Wang, W. H. Qiao, H. Wang, J. Liu, K. M. Olsen, and Q. W. Yang. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Science Advances, 2019 DOI: 10.1126/sciadv.aax3619
  2. Ze‐Hua Guo, Richard P. Haslam, Louise V Michaelson, Edward C. Yeung, Shiu‐Cheung Lung, Johnathan A. Napier, Mee‐Len Chye. The overexpression of rice ACYL ‐ CoA ‐ BINDING PROTEIN 2 increases grain size and bran oil content in transgenic rice. The Plant Journal, 2019; 100 (6): 1132 DOI: 10.1111/tpj.14503
December 20, 2021

Episode 462 - Fish helping make smart materials and renewable tech

What can fish scales teach us about the next generation of smart materials. Why is 'scale armor' often found in video games and on fish so strong? What is special about fish scales that can help us make a new generation of smart materials for clothing and structures? What do 35 million year old fish trapped in mud have to do with wind turbines and batteries? Renewable tech relies on Rare earth metals, so where do we find them? Studying fossilized fish can help us find more sources of rare earth metals to build more renewable tech.

  1. Haocheng Quan, Wen Yang, Marine Lapeyriere, Eric Schaible, Robert O. Ritchie, Marc A. Meyers. Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common CarpMatter, 2020; DOI: 10.1016/j.matt.2020.05.011
  2. Junichiro Ohta, Kazutaka Yasukawa, Tatsuo Nozaki, Yutaro Takaya, Kazuhide Mimura, Koichiro Fujinaga, Kentaro Nakamura, Yoichi Usui, Jun-Ichi Kimura, Qing Chang, Yasuhiro Kato. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling eventScientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-66835-8
December 13, 2021

Episode 461 - What trees can help save a city

Planting trees can help save the planet, but which trees should you plant? How do you decide what trees to plant and where to help the environment and people? Trees can help reduce pollution in the air and ground, so where are they most effective in a city? Planting urban trees can have significant public health benefits, but what trees are most effective to plant? Just what exactly is grass? How can detailed modeling and genetic testing help solve the riddle of grass classification? Are grass leaves and sheathes one thing, or is it stem and leaf like a tree?

  1. A. E. Richardson, J. Cheng, R. Johnston, R. Kennaway, B. R. Conlon, A. B. Rebocho, H. Kong, M. J. Scanlon, S. Hake, E. Coen. Evolution of the grass leaf by primordium extension and petiole-lamina remodelingScience, 2021; 374 (6573): 1377 DOI: 10.1126/science.abf9407
  2. Loren P. Hopkins, Deborah J. January‐Bevers, Erin K. Caton, Laura A. Campos. A simple tree planting framework to improve climate, air pollution, health, and urban heat in vulnerable locations using non‐traditional partnersPLANTS, PEOPLE, PLANET, 2021; DOI: 10.1002/ppp3.10245
November 29, 2021

Episode 459 - Bees that eat meat, and Ants with a social stomach

Bees seem friendly and sweet, but what about a bee that eats meat? What has to happen to allow a bee to consume meat instead of pollen. What does honey produced by meat eating bees taste like? How do meat eating bees bite into their food? How different is the stomach of a meat eating bee from it's vegetarian cousins?Forget photos of food on social networks, ants have a whole social stomach for exchanging proteins. Ants carry and exchange all sorts of fluids to help parts of the colony at the right time. Ants second stomach does not contain food but is used to help process fluids for the colony.

  1. Laura L. Figueroa, Jessica J. Maccaro, Erin Krichilsky, Douglas Yanega, Quinn S. McFrederick. Why Did the Bee Eat the Chicken? Symbiont Gain, Loss, and Retention in the Vulture Bee MicrobiomemBio, 2021; DOI: 10.1128/mBio.02317-21
  2. Sanja M Hakala, Marie-Pierre Meurville, Michael Stumpe, Adria C LeBoeuf. Biomarkers in a socially exchanged fluid reflect colony maturity, behavior and distributed metabolismeLife, 2021; 10 DOI: 10.7554/eLife.74005
November 22, 2021

Episode 458 - Molecular methods to fight fungi and bacteria

There's a public health crisis looming beyond the pandemic. Researchers across the world are working to stop the next public health disaster - the rise of antibiotic resistance. We rely on antibiotics to treat various disease but their effectiveness wanes as bacteria builds its resistance. How do we keep track of the changes in bacteria's resistance to antibiotics? What do bird droppings in Cambridge tell us about antibiotic resistance? Developing new antibiotics is tricky, what part of bacteria do you target? Is it better to have a simple molecule or a complex one when tackling bacteria? Bursting the bacteria cell is one way to defeat but its even better to break their building blocks. Fungal infections are growing more resistant to treatment. How can we devleop new categories of anti-fungal treatments?

  1. Joana G. C. Rodrigues, Harisree P. Nair, Christopher O'Kane, Caray A. Walker. Prevalence of multidrug resistance in Pseudomonas spp. isolated from wild bird feces in an urban aquatic environmentEcology and Evolution, 2021; 11 (20): 14303 DOI: 10.1002/ece3.8146
  2. Elisabeth Reithuber, Torbjörn Wixe, Kevin C. Ludwig, Anna Müller, Hanna Uvell, Fabian Grein, Anders E. G. Lindgren, Sandra Muschiol, Priyanka Nannapaneni, Anna Eriksson, Tanja Schneider, Staffan Normark, Birgitta Henriques-Normark, Fredrik Almqvist, Peter Mellroth. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediatesProceedings of the National Academy of Sciences, 2021; 118 (47): e2108244118 DOI: 10.1073/pnas.2108244118
  3. Christian DeJarnette, Chris J. Meyer, Alexander R. Jenner, Arielle Butts, Tracy Peters, Martin N. Cheramie, Gregory A. Phelps, Nicole A. Vita, Victoria C. Loudon-Hossler, Richard E. Lee, Glen E. Palmer. Identification of Inhibitors of Fungal Fatty Acid BiosynthesisACS Infectious Diseases, 2021; DOI: 10.1021/acsinfecdis.1c00404
November 8, 2021

Episode 456 - Responding rapidly to bad smells

How does our brain filter and process all those smells? Our brain has a lot of dedicated space for smells, but knowing which is which is tricky. How does our brain respond so quickly to bad smells? We will move out of the way of a bad smell fast. In under half a second you brain can detect and move away from a bad smell. Why are our brains hard wired to detect and react to the smell of caramel? Furaneol gives off a caramel like smell and is found in fruits and even bread. Why does our brain dedicate space to it? What is better at waking you up - a good smell or a bad smell? How do brains process smells even whens sleeping?

  1. Behzad Iravani, Martin Schaefer, Donald A. Wilson, Artin Arshamian, Johan N. Lundström. The human olfactory bulb processes odor valence representation and cues motor avoidance behavior. Proceedings of the National Academy of Sciences, 2021; 118 (42): e2101209118 DOI: 10.1073/pnas.2101209118
  2. Franziska Haag, Sandra Hoffmann, Dietmar Krautwurst. Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors. Journal of Agricultural and Food Chemistry, 2021; 69 (37): 10999 DOI: 10.1021/acs.jafc.1c03314
  3. Alice S. French, Quentin Geissmann, Esteban J. Beckwith, Giorgio F. Gilestro. Sensory processing during sleep in Drosophila melanogaster. Nature, 2021; DOI: 10.1038/s41586-021-03954-w
November 1, 2021

Episode 455 - Growing rocket fuel on Mars and greener jet fuel on earth

Growing rocket fuel on the surface of Mars, and greener jet fuel here on earth. The problem with space travel is you have to take everything with you. Including fuel. Is there a way to grow your own fuel to make the load lighter on a rocket? A round trip to Mars needs billions of dollars of fuel. Is there a way we can reduce cost and energy by producing rocket fuel on the surface of Mars? How can you grow rocket fuel on mars using microbes? Would the same rocket fuel you use on Earth make sense to use on Mars? How can we clean up the aviation industry's carbon emissions? Are there alternative jet fuels that don't come at the expense of growing food? Bio-fuels are often produced at the expense of food, but are there alternatives that are win win? 

  1. Nicholas S. Kruyer, Matthew J. Realff, Wenting Sun, Caroline L. Genzale, Pamela Peralta-Yahya. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategyNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-26393-7
  2. Asiful Alam, Md Farhad Hossain Masum, Puneet Dwivedi. Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United StatesGCB Bioenergy, 2021 DOI: 10.1111/.1gcbb2888
October 25, 2021

Episode 454 - Evolution‘s strange journeys in crabs, snakes and lizards

Why does nature continually evolve crabs? What is so good about crabs that nature just cannot stop inventing it? How can you trap a crab inside amber? What can a fossilized crab, capture din amber tell us about the complex history of crabs? Just when did crabs invade land and how did they get stuck in tree sap? How do you preserve  fossil as delicate as a crab? How did lizards and snakes develop their complex teeth? Mammals weren't the only ones to evolve complex teeth with cusps. Evolution isn't necessarily a one way progression, sometimes complexity can be rolled back like in lizards. Lizards developed complex teeth to eat plants, but then some went back to their old ways.

  1. Keiler, J., Wirkner, C., & Richter, S. (2017). One hundred years of carcinization – the evolution of the crab-like habitus in Anomura (Arthropoda: Crustacea). Biological Journal Of The Linnean Society121(1), 200-222. doi: 10.1093/biolinnean/blw031
  2. Watson, S. (2021). Why everything eventually becomes a crab. Retrieved 23 October 2021, from https://www.popsci.com/story/animals/why-everything-becomes-crab-meme-carcinization/
  3. Fabien Lafuma, Ian J. Corfe, Julien Clavel, Nicolas Di-Po�. Multiple evolutionary origins and losses of tooth complexity in squamatesNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-26285-w
October 11, 2021

Episode 452 - Eureka Prizes 21 - Fighting back against viruses

We celebrate the winners of the Eureka Prizes in 2021. The top prizes in Aussie Science shows that it's possible for major science awards to not be male dominated.  Are humans just the collateral damage of the war between cholera and protozoa? How does getting eaten actually make cholera stronger? We celebrate the achievements of Australian scientists helping make rotavirus vaccines more accessible for all. Producing vaccines cheaply and locally, that are easy to roll out can save half a million lives each year. Whilst vaccines for rotavirus exist already they are complex and costly. Aussie researchers are helping make it simpler and widely available.


  1. Gustavo Espinoza-Vergara, Parisa Noorian, Cecilia A. Silva-Valenzuela, Benjamin B. A. Raymond, Christopher Allen, M. Mozammel Hoque, Shuyang Sun, Michael S. Johnson, Mathieu Pernice, Staffan Kjelleberg, Steven P. Djordjevic, Maurizio Labbate, Andrew Camilli, Diane McDougald. Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivoNature Microbiology, 2019; DOI: 10.1038/s41564-019-0563-x
  2. Bines, J., At Thobari, J., Satria, C., Handley, A., Watts, E., & Cowley, D. et al. (2018). Human Neonatal Rotavirus Vaccine (RV3-BB) to Target Rotavirus from Birth. New England Journal Of Medicine378(8), 719-730. doi: 10.1056/nejmoa1706804
  3. Mannix, L. (2021). Eureka science prizes go to childhood vaccine and microplastics hotspot hunt. Retrieved 9 October 2021, from https://www.smh.com.au/national/childhood-vaccine-microplastics-hotspot-hunt-take-top-science-gongs-20211007-p58xyi.html
  4. Protozoans and pathogens make for an infectious mix. (2021). Retrieved 9 October 2021, from https://www.uts.edu.au/news/health-science/protozoans-and-pathogens-make-infectious-mix
  5. Tu, J. (2021). Meet the women transforming science in Australia: Eureka Prize finalists. Retrieved 9 October 2021, from https://womensagenda.com.au/latest/meet-the-women-transforming-science-in-australia-eureka-prize-finalists/