Loading Downloads
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

December 21, 2020

Episode 410 - Mysterious Volcanoes, Plates and Subduction

Just how old are continental plates? When did plates sliding around and over each other really take off? What can rocks in the Canadian tundra tell us about the ages of the continents? The formation of continents led to a transformation of our planet and it's atmosphere - so when did it start? How can Australia have so many volcanoes on it's east coast despite being so far from the Pacific ring of fire? What causes Australia's mysterious volcanoes? Volcanoes in Alaska may be linked together in one super volcano. The Aleutian islands many volcanoes may be more linked than we thought.


  1. Sarah M. Aarons, Jesse R. Reimink, Nicolas D. Greber, Andy W. Heard, Zhe Zhang, Nicolas Dauphas. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss ComplexScience Advances, 2020; 6 (50): eabc9959 DOI: 10.1126/sciadv.abc9959
  2. American Geophysical Union. (2020, December 3). Cluster of Alaskan islands could be single, interconnected giant volcano. ScienceDaily. Retrieved December 20, 2020 from www.sciencedaily.com/releases/2020/12/201203094531.htm
December 14, 2020

Episode 409 - Stellar Weather, Life on other planets and Space Dust

What is the space around the sun like? Cold? Hot? Dusty? How does the space around the Sun change over time? Does the Sun suck up dust in the solar system, or blow it out? What can we learn about stellar weather in our neighbouring stars. Red Dwarfs are one of the most common stars in our Galaxy, but also produce lots of flares. Are rocky planets in Red Dwarf's habitable zone safe from stellar weather?

  1. Andrew Zic, Tara Murphy, Christene Lynch, George Heald, Emil Lenc, David L. Kaplan, Iver H. Cairns, David Coward, Bruce Gendre, Helen Johnston, Meredith MacGregor, Danny C. Price, Michael S. Wheatland. A Flare-type IV Burst Event from Proxima Centauri and Implications for Space WeatherThe Astrophysical Journal, 2020; 905 (1): 23 DOI: 10.3847/1538-4357/abca90
  2. University of Colorado at Boulder. (2020, December 10). A look at the sun's dusty environment. ScienceDaily. Retrieved December 10, 2020 from www.sciencedaily.com/releases/2020/12/201210112131.htm
December 7, 2020

Episode 408 - Life in deep sea soil, and blending in amongst leaves

Life underneath the sea floor at the deepest parts of the ocean. How can life survive in deep sea with no light and at incredible temperatures? Have you ever thought about life beneath the beneath the sea? How can life survive in soil hotter than boiling water? If a tree feels out of place, it's microbes on leaves tend to blend in with the crowd. What happens to the microbes on the iconic maple leaves as the trees go further north? Feel like a fish out of water, or a maple amongst conifers? Maybe its time to blend in. How can we use plant based compounds to help keep plants safe from bacterial infection?

  1. Verena B. Heuer, Fumio Inagaki, Yuki Morono, Yusuke Kubo, Arthur J. Spivack, Bernhard Viehweger, Tina Treude, Felix Beulig, Florence Schubotz, Satoshi Tonai, Stephen A. Bowden, Margaret Cramm, Susann Henkel, Takehiro Hirose, Kira Homola, Tatsuhiko Hoshino, Akira Ijiri, Hiroyuki Imachi, Nana Kamiya, Masanori Kaneko, Lorenzo Lagostina, Hayley Manners, Harry-Luke McClelland, Kyle Metcalfe, Natsumi Okutsu, Donald Pan, Maija J. Raudsepp, Justine Sauvage, Man?Yin Tsang, David T. Wang, Emily Whitaker, Yuzuru Yamamoto, Kiho Yang, Lena Maeda, Rishi R. Adhikari, Clemens Glombitza, Yohei Hamada, Jens Kallmeyer, Jenny Wendt, Lars Wörmer, Yasuhiro Yamada, Masataka Kinoshita, Kai Uwe Hinrichs. Temperature limits to deep subseafloor life in the Nankai Trough subduction zoneScience, 2020 DOI: 10.1126/science.abd7934
  2. Geneviève Lajoie, Steven W. Kembel. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradientEcological Monographs, 2020; DOI: 10.1002/ecm.1443
  3. Hong-Wu Liu, Qing-Tian Ji, Gang-Gang Ren, Fang Wang, Fen Su, Pei-Yi Wang, Xiang Zhou, Zhi-Bing Wu, Zhong Li, Song Yang. Antibacterial Functions and Proposed Modes of Action of Novel 1,2,3,4-Tetrahydro-β-carboline Derivatives that Possess an Attractive 1,3-Diaminopropan-2-ol Pattern against Rice Bacterial Blight, Kiwifruit Bacterial Canker, and Citrus Bacterial CankerJournal of Agricultural and Food Chemistry, 2020; 68 (45): 12558 DOI: 10.1021/acs.jafc.0c02528
November 30, 2020

Episode 407 - Random generating DNA and random mouse movements

Random numbers are incredibly important for our digital economy, so how do we generate them? What is the best way to make a random number: roll a dice, lava lamp, guess, DNA? What connects lava lamps, e-commerce and synthetic DNA? How can we better generate random numbers using synthesized DNA. How do your mouse movements reveal about your decision making process. Do mouse movements help us identify risk takers or keen deliberators. Whether you know it or not, your mouse moving may be part of your decision making process.

  1. Linda C. Meiser, Julian Koch, Philipp L. Antkowiak, Wendelin J. Stark, Reinhard Heckel, Robert N. Grass. DNA synthesis for true random number generationNature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-19757-y
  2. Paul E. Stillman, Ian Krajbich, and Melissa J. Ferguson. Using dynamic monitoring of choices to predict and understand risk preferencesPNAS, 2020 DOI: 10.1073/pnas.2010056117
November 23, 2020

Episode 406 - Lifting mountains out of the ground…with rain

Lifting mountains out of the ground with...rain? How do mountain ranges form is a surprisingly difficult question to answer. Complex equations with lots of inputs are tricky to model and solve, but can help us understand the way mountains form. Rain, cosmic particles, sand and the Himalayas can help us understand how mountains form. It's hard to picture, but mountains actually float on the molten rock of the mantle. Make them lighter and they'll rise. Do rapid climate swings change mountains, or do mountains change the climate? The answer is tricky.

  1. Brandon, M. (2005, July 01). How Erosion Builds Mountains. Retrieved November 22, 2020, from https://www.scientificamerican.com/article/how-erosion-builds-mountains-2005-07/
  2. B. A. Adams, K. X. Whipple, A. M. Forte, A. M. Heimsath and K. V. Hodges. Climate controls on erosion in tectonically active landscapes. Science Advances, 2020 DOI: 10.1126/sciadv.aaz3166
November 16, 2020

Episode 405 - Studying Supernova, pollution and air quality with trees

Studying supernova and air quality with the help of trees. Supernova are some of the most devastating events in the universe, but what is their connection to trees? By studying tree rings we can help piece together the final days of stars. Supernova can cause large spikes in radiation that can be detected in tree rings. Trees do a lot for us but they can also help us track air quality simply and cheaply. Magnets and pine needles can helps us understand air quality. Air quality monitoring can be a matter of running a magnet over some leaves.


  1. G. Robert Brakenridge. Solar system exposure to supernova γ radiationInternational Journal of Astrobiology, 2020; 1 DOI: 10.1017/S1473550420000348
  2. Grant Rea‐Downing, Brendon J. Quirk, Courtney L. Wagner, Peter C. Lippert. Evergreen needle magnetization as a proxy for particulate matter pollution in urban environmentsGeoHealth, 2020; DOI: 10.1029/2020GH000286
November 9, 2020

Episode 404 - Ants , Acid, and Yeast that grow acid

Ants, acid and yeast that can grow their own acid. Ants use formic acid to keep their colony safe inside and out. By ingesting formic acid, Ants are able to ward off dangerous pathogens. Passing food with your mouth isn't very socially distant, but ants eat acid to make it safe. How can yeast be used to 'grow' materials needed to make perfume and dyes? Succinic acid is a useful chemical precursor, but its possible to grow yeast that are able yo produce on scale as a by product. Finding just the right genes with CRISPR and super computers can turn yeast into a chemical production powerhouse.

  1. Simon Tragust, Claudia Herrmann, Jane Häfner, Ronja Braasch, Christina Tilgen, Maria Hoock, Margarita Artemis Milidakis, Roy Gross, Heike Feldhaar. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife, 2020; 9 DOI: 10.7554/eLife.60287
  2. Patrick F. Suthers, Hoang V. Dinh, Zia Fatma, Yihui Shen, Siu Hung Joshua Chan, Joshua D. Rabinowitz, Huimin Zhao, Costas D. Maranas. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020; 11: e00148 DOI: 10.1016/j.mec.2020.e00148
November 2, 2020

Episode 403 - Taking pollutants out of our water, factories and environment

How can we take pollutants easily out of our water, factories and environment? PFAS contamination is difficult to clear up, but a new method could attract, trap and destroy it with electrodes. PFAS can be found in many things, but taking it out of an area has often been very difficult. Using a tunenable electrode, in 3 hours you could extract and destroy PFAS in contaminated water. A combined clay and glass filter could neatly trap and extract CO2 from a gassy mixture. industrial processes often produce CO2 amongst other gases, but how can you quickly only separate out that CO2, reuse it and prevent it from being emitted? Lead in drinking water is a serious issue,but understanding the amount of exposure is difficult. A new method for analysing lead in drinking water tips acid onto 'filled' filters.

  1. Kwiyong Kim, Paola Baldaguez Medina, Johannes Elbert, Emmanuel Kayiwa, Roland D. Cusick, Yujie Men, Xiao Su. Molecular Tuning of Redox‐Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020; 2004635 DOI: 10.1002/adfm.202004635
  2. Basic Information on PFAS. (2018, December 06). Retrieved October 31, 2020, from https://www.epa.gov/pfas/basic-information-pfas
  3. Martin Rieß, Renée Siegel, Jürgen Senker, Josef Breu. Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020; 100210 DOI: 10.1016/j.xcrp.2020.100210
  4. Weiyi Pan, Elizabeth R. Johnson, Daniel E. Giammar. Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. Environmental Science: Water Research & Technology, 2020; 6 (10): 2734 DOI: 10.1039/d0ew00496k
October 26, 2020

Episode 402 - Feathers on Dinosaurs and Pterosaurs

We dive in to the debate around feathers on dinosaurs and pterosaurs. When did the first feathers develop? How did they form and what was their connection to modern birds? What can we learn by studying the feathers of modern birds and dinosaurs? Did Pterosaurs have feathers? Why would pterosaurs feathers upend our understanding of feathered dinosaurs? What colour where archaeopteryx feathers? How different were the feathers of archaeopteryx from modern birds?

  1. Ryan M. Carney, Helmut Tischlinger, Matthew D. Shawkey. Evidence corroborates identity of isolated fossil feather as a wing covert of ArchaeopteryxScientific Reports, 2020; 10 (1) DOI: 10.1038/s41598-020-65336-y
  2. Thomas G. Kaye, Michael Pittman, Gerald Mayr, Daniela Schwarz, Xing Xu. Detection of lost calamus challenges identity of isolated Archaeopteryx featherScientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-018-37343-7
  3. David M. Unwin, David M. Martill. No protofeathers on pterosaursNature Ecology & Evolution, 2020; DOI: 10.1038/s41559-020-01308-9
  4. Zixiao Yang, Baoyu Jiang, Maria E. McNamara, Stuart L. Kearns, Michael Pittman, Thomas G. Kaye, Patrick J. Orr, Xing Xu, Michael J. Benton. Pterosaur integumentary structures with complex feather-like branchingNature Ecology & Evolution, 2018; 3 (1): 24 DOI: 10.1038/s41559-018-0728-7
October 19, 2020

Episode 401 - Space Collisions and cleaning up debris

Dodging collisions faster than a speeding bullet. We look at cleaning up space debris. Explosions and collisions of spaceships is great in sci-fi but bad news for us on Earth. Space is rapidly filling with satellites. What happens to them at the end of their life? Collisions in space (or near misses) are becoming more and more common. How can we clean up space and keep the skies safe for important satellites.

  1. Crane, L. (n.d.). Two old spacecraft just avoided catastrophically colliding in orbit. Retrieved October 17, 2020, from https://www.newscientist.com/article/2257525-two-old-spacecraft-just-avoided-catastrophically-colliding-in-orbit/
  2. Davenport, C. (2020, October 16). A rocket booster and a dead satellite avoided a collision Thursday, illustrating the 'ticking time bomb' of space debris. Retrieved October 17, 2020, from https://www.washingtonpost.com/technology/2020/10/15/space-collision-might-happen-thursday/
  3. Marks, P. (2017, April 18). Satellite swarms could increase space junk risk by 50 per cent. Retrieved October 17, 2020, from https://www.newscientist.com/article/2128024-satellite-swarms-could-increase-space-junk-risk-by-50-per-cent/
  4. Wall, M. (2019, April 24). Meet OSCaR: Tiny Cubesat Would Clean Up Space Junk. Retrieved October 17, 2020, from https://www.space.com/space-junk-cleanup-cubesat-oscar.html
  5. Wall, M. (2020, June 23). Foam 'spider webs' from tiny satellites could help clean up space junk. Retrieved October 17, 2020, from https://www.space.com/space-junk-cleanup-foam-satellite-technology.html
  6. Wells, T. (2019, April 24). Rensselaer team developing tool to battle space debris. Retrieved October 17, 2020, from https://phys.org/news/2019-04-rensselaer-team-tool-space-debris.html
October 12, 2020

Episode 400 - Nobel Prizes, Collaboration, and more sustainable trees

The Nobel Prize's legacy on gender and diversity is poor, but are they turning it around? We celebrate the winners of the Nobel Prize, but look critically at the challenges of the system. How do you recognize the collaboration of 100s or 1000s of people with a single award? Is science advanced through singular genius or the collaboration of many? How can CRISPR help us create a more sustainable planet? Growing trees that are easier to process but still able to thrive is possible with CRISPR. How can making trees with less lignin help make a greener planet?

  1. Advanced information. NobelPrize.org. Nobel Media AB 2020. Sat. 10 Oct 2020. <https://www.nobelprize.org/prizes/chemistry/2020/advanced-information
  2. Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme, Wout Boerjan. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 alleleNature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18822-w
October 5, 2020

Episode 399 - Avoiding Fatbergs and Breaking down Plastic

Breaking up fatbergs, and breaking down plastic with smarter materials. Sewers are a dangerous place, with fat bergs and sulphuric acid, but can they be cleaned up? Portland Cement has helped build the modern world, but does it also cause problems in our sewers? how can we stop our sewers from corroding with better materials? Breaking down plastic takes a long time, but through in a super team of enzymes and it could be done in days. A super team of enzymes helps break down plastic and could lead to a circular economy.

  1. Brandon C. Knott, Erika Erickson, Mark D. Allen, Japheth E. Gado, Rosie Graham, Fiona L. Kearns, Isabel Pardo, Ece Topuzlu, Jared J. Anderson, Harry P. Austin, Graham Dominick, Christopher W. Johnson, Nicholas A. Rorrer, Caralyn J. Szostkiewicz, Valérie Copié, Christina M. Payne, H. Lee Woodcock, Bryon S. Donohoe, Gregg T. Beckham, John E. McGeehan. Characterization and engineering of a two-enzyme system for plastics depolymerizationProceedings of the National Academy of Sciences, 2020; 202006753 DOI: 10.1073/pnas.2006753117
  2. Rajeev Roychand, Jie Li, Saman De Silva, Mohammad Saberian, David Law, Biplob Kumar Pramanik. Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergsResources, Conservation and Recycling, 2021; 164: 105166 DOI: 10.1016/j.resconrec.2020.105166
September 28, 2020

Episode 398 - Ig Nobel Prize ‘20 - Alligators and Spiders

We find out more about two more Ig Nobel prizes, for Accoustics and Entomology. Spiders aren't insects, but they're pretty similar. So why do so many entomologists fear spiders? Lots of legs, moves suddenly, weird shape, are fine for entomologists but add 2 extra legs and it's right out. Extra legs are a deal breaker for entomologists with a fear of spiders. Helium, Alligators in a tank, and resonant frequencies won this group a Ig Nobel prize. You've heard of beard song, but what about Alligator on helium song? Alligators and Birds can help us understand the songs of Dinosaurs.

  1. A Chinese Alligator in Heliox: Formant Frequencies in a Crocodilian,” Stephan A. Reber, Takeshi Nishimura, Judith Janisch, Mark Robertson, and W. Tecumseh Fitch, Journal of Experimental Biology, vol. 218, 2015, pp. 2442-2447.
  2. Arachnophobic Entomologists: When Two More Legs Makes a Big Difference,” Richard S. Vetter, American Entomologist, vol. 59, no. 3, 2013, pp. 168-175.
September 21, 2020

Episode 397 - Ignobel Prize ‘20 - Physics

We celebrate the Ignobel Prizes once again, and this year we take a deep dive into the Physics prize for 2020. Faraday waves (standing waves in liquids or liquid filled objects) look pretty, but can anything filled with like have one? What about a worm? Can you make Faraday waves and resonant frequencies in Worms? What happens when a laser, a worm, and a speaker go into a lab? The result is an Ignobel Prize.

  1. Maksymov, I.S., Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci Rep 10, 8564 (2020). https://doi.org/10.1038/s41598-020-65295-4
  2. 2020 Ceremony. (2020, September 18). Retrieved September 18, 2020, from https://www.improbable.com/ig-about/the-30th-first-annual-ig-nobel-prize-ceremony/
September 14, 2020

Episode 396 - Is that food safe to eat

Is that food safe to eat? How can you tell if food has gone bad beyond just reading a date? Ever been confused by best before or use by? A new type of label could make it a mater of colors. Color based labels could help detect if your food has gone bad or is contaminated by bacteria. How can we study the microbes that live inside our intestines? The gut microbiome is incredibly fascinating but difficult to study without damaging it. A tiny pill that takes snapshots of micro organisms inside your stomach as it passes through.

  1. Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply ChainAdvanced Functional Materials, 2020 DOI: 10.1002/adfm.202005370
  2. Lu Chen, Lina Gruzinskyte, Steffen Lynge Jørgensen, Anja Boisen, Sarvesh Kumar Srivastava. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and BiomarkersACS Nano, 2020; DOI: 10.1021/acsnano.0c05426
September 7, 2020

Episode 395 - Learning from unusual plants

Plants are incredibly important for a healthy planet and a well fed population. How can we improve our plants by learning from some unusual ones? You normally picture a plant with lots of leaves, but some only grow one lonely leaf. Deep in limestone caves of South East Asia grows a plant with only ever one giant leaf. How can a plant survive with just one leaf and why does it continue to grow in size? What can we learn by studying the root systems of different plants? Can breeding plants to have more flexible roots lead to more resilient crops?

  1. Ayaka Kinoshita, Hiroyuki Koga, Hirokazu Tsukaya. Expression Profiles of ANGUSTIFOLIA3 and SHOOT MERISTEMLESS, Key Genes for Meristematic Activity in a One-Leaf Plant Monophyllaea glabra, Revealed by Whole-Mount In Situ Hybridization. Frontiers in Plant Science, 2020; 11 DOI: 10.3389/fpls.2020.01160
  2. James D. Burridge, Harini Rangarajan, Jonathan P. Lynch. Comparative phenomics of annual grain legume root architecture. Crop Science, 2020; DOI: 10.1002/csc2.20241
August 31, 2020

Episode 394 - Travelling through time with telescopes

Telescopes can help us travel back in time to the early universe. We can watch galaxies form, the universe have a makeover and giant black holes appear. Using different telescopes we can learn about the cosmic dawn and the cosmic noon. The early universe was hazy and hard for light to travel far. What gave the early universe a makeover to allow starlight to travel? What fed the super hungry super massive black-holes of the early universe? Where did the early black holes find enough food to make them swell to massive sizes? What can we learn from the cosmic noon when most of the stars in the universe were formed? 

  1. NASA/Goddard Space Flight Center. (2020, January 6). Astronomers spot distant galaxy group driving ancient cosmic makeover. ScienceDaily. Retrieved January 11, 2020 from www.sciencedaily.com/releases/2020/01/200106141610.htm
  2. Emanuele Paolo Farina, Fabrizio Arrigoni-Battaia, Tiago Costa, Fabian Walter, Joseph F. Hennawi, Alyssa B. Drake, Roberto Decarli, Thales A. Gutcke, Chiara Mazzucchelli, Marcel Neeleman, Iskren Georgiev, Anna-Christina Eilers, Frederick B. Davies, Eduardo Bañados, Xiaohui Fan, Masafusa Onoue, Jan-Torge Schindler, Bram P. Venemans, Feige Wang, Jinyi Yang, Sebastian Rabien, Lorenzo Busoni. The REQUIEM Survey. I. A Search for Extended Lyα Nebular Emission Around 31 z > 5.7 Quasars. The Astrophysical Journal, 2019; 887 (2): 196 DOI: 10.3847/1538-4357/ab5847
  3. T. Mauch et al. The 1.28 GHz MeerKAT DEEP2 Image. The Astrophysical Journal, 2019 [link]
August 24, 2020

Episode 393 - Microbial life in a teaspoon of the ocean

Life in the ocean is more than just fish, whales and squid, it goes down to a microbial level. We can learn a lot about the health of a whole reef system by studying microbial life in the water. Just one teaspoon of the ocean contains thousands of unique microbes. The ocean currents carry and mix ocean microbes. What makes a healthy reef? Well take a look at the microbes. How can nutrient and soil runoff damage a reef?

  1. Maria G. Pachiadaki, Julia M. Brown, Joseph Brown, Oliver Bezuidt, Paul M. Berube, Steven J. Biller, Nicole J. Poulton, Michael D. Burkart, James J. La Clair, Sallie W. Chisholm, Ramunas Stepanauskas. Charting the Complexity of the Marine Microbiome through Single-Cell GenomicsCell, 2019; 179 (7): 1623 DOI: 10.1016/j.cell.2019.11.017
  2. Laura Weber, Patricia González‐Díaz, Maickel Armenteros, Víctor M. Ferrer, Fernando Bretos, Erich Bartels, Alyson E. Santoro, Amy Apprill. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida KeysEnvironmental Microbiology, 2019; DOI: 10.1111/1462-2920.14870
August 17, 2020

Episode 392 - How brains process and overload of information

Your senses bombard your brain with an overload of information, so how does it process it all? How does y our brain decide what information to focus on? The brain can focus voluntarily or involuntarily on regions of an image to best process it. How does your brain decide which parts of an image to focus on? What part of your brain helps gatekeep the waves of sensory input before it gets processed? How can your brain help regulate and manage an overload of sensory inputs.

  1. Antonio Fernández, Marisa Carrasco. Extinguishing Exogenous Attention via Transcranial Magnetic StimulationCurrent Biology, 2020; DOI: 10.1016/j.cub.2020.07.068
  2. Yinqing Li, Violeta G. Lopez-Huerta, Xian Adiconis, Kirsten Levandowski, Soonwook Choi, Sean K. Simmons, Mario A. Arias-Garcia, Baolin Guo, Annie Y. Yao, Timothy R. Blosser, Ralf D. Wimmer, Tomomi Aida, Alexander Atamian, Tina Naik, Xuyun Sun, Dasheng Bi, Diya Malhotra, Cynthia C. Hession, Reut Shema, Marcos Gomes, Taibo Li, Eunjin Hwang, Alexandra Krol, Monika Kowalczyk, João Peça, Gang Pan, Michael M. Halassa, Joshua Z. Levin, Zhanyan Fu, Guoping Feng. Distinct subnetworks of the thalamic reticular nucleusNature, 2020; DOI: 10.1038/s41586-020-2504-5
August 10, 2020

Episode 391 - Mysteries of the sun, stellar weather and magnetic fields

The sun contains many mysteries, which are hard to unravel without special space probes. Why is the sun's corona so much hotter than the sun's surface? What helps form the biggest solar flares? When two arches of the sun's magnetic fields meet it can create some dangerous flares. Solar storms and solar flares can destroy satellites, power grids and spaceships. How can we better predict stellar weather and avoid disaster? Mapping out the Suns magnetic field can help us better predict stellar weather.

  1. European Space Agency. (2020, July 16). Solar Orbiter's first images reveal 'campfires' on the Sun: ESA/NASA mission returns first data, snaps closest pictures of the Sun. ScienceDaily. Retrieved August 7, 2020 from www.sciencedaily.com/releases/2020/07/200716120652.htm
  2. Kanya Kusano, Tomoya Iju, Yumi Bamba, Satoshi Inoue. A physics-based method that can predict imminent large solar flaresScience, 2020; 369 (6503): 587 DOI: 10.1126/science.aaz2511