Episodes

Monday May 10, 2021
Episode 430 - Using Corn to clean water, and new wind turbine designs
Monday May 10, 2021
Monday May 10, 2021
Clever engineering can turn waste products into planet cleaning tools. Corn is America's biggest crop, but it's incredibly wasteful. Corn waste can be given a second life as activated carbon to help clean water. Corn waste makes for an efficient water when it's turned into activated charcoal. Wind turbines have to be carefully placed and located to maximise their efficiency. When designing a wind farm, the location and style of the turbine can greatly impact generation. Which design is better for wind turbines; vertical or horizontal? Vertical wind turbines aren't as common, but they can work together to boost efficiency.
- Mark Gale, Tu Nguyen, Marissa Moreno, Kandis Leslie Gilliard-AbdulAziz. Physiochemical Properties of Biochar and Activated Carbon from Biomass Residue: Influence of Process Conditions to Adsorbent Properties. ACS Omega, 2021; 6 (15): 10224 DOI: 10.1021/acsomega.1c00530
- Joachim Toftegaard Hansen, Mahak Mahak, Iakovos Tzanakis. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approach. Renewable Energy, 2021; 171: 1371 DOI: 10.1016/j.renene.2021.03.001

Monday Apr 26, 2021
Episode 428 - Lightning and Early life on earth
Monday Apr 26, 2021
Monday Apr 26, 2021
What kicked off early life on earth? Organic chemistry and early life need the right minerals to be present and accessible. What helped unlock early minerals on earth like phosphorous to kick start life? Lightning strikes seem rare, but they're much more frequent than meteorites. Early life on Earth could have been helped along through lightning strikes and meteorites. DNA, RNA and Proteins are locked in a complex dance, but which came first. DNA can't replicate without the help of protein and RNA, so how did we develop DNA in the first place? Is it possible for RNA to replicate on it's own?
References:
- Benjamin L. Hess, Sandra Piazolo, Jason Harvey. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-21849-2
- Alexandra Kühnlein, Simon A Lanzmich, Dieter Braun. tRNA sequences can assemble into a replicator. eLife, 2021; 10 DOI: 10.7554/eLife.63431

Monday Mar 29, 2021
Episode 424 - Hunting for atmospheres on other planets
Monday Mar 29, 2021
Monday Mar 29, 2021
Mars was once covered with water, so where did all the water on Mars go? What happened to the water in the Martian atmosphere? Why isn't there an abundance of heavy water in the Martian atmosphere? Water can get trapped inside rocks and minerals without volcanoes to cycle them. Volcanoes and tectonics help sequester, cycle and release water, so what happens on a planet without them? How can we hunt for signs of water atmospheres on exoplanets? On hot rocky exoplanets with oceans of magma, what happens to their hydrogen rich atmospheres? An atmosphere of of hydrogen can slowly turn and change into water with the help of a magma ocean.
References:
- E. L. Scheller, B. L. Ehlmann, Renyu Hu, D. J. Adams, Y. L. Yung. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science, 2021; eabc7717 DOI: 10.1126/science.abc7717
- Edwin S. Kite, Laura Schaefer. Water on Hot Rocky Exoplanets. The Astrophysical Journal Letters, 2021; 909 (2): L22 DOI: 10.3847/2041-8213/abe7dc

Monday Mar 22, 2021
Episode 423 - Humans vs Bacteria on earth and in space
Monday Mar 22, 2021
Monday Mar 22, 2021
Space is hard, things are different there which means something simple as salmonella becomes much more challenging. The rules of bacterial infection and response change once you're in space. How does your body respond to bacterial infection in microgravity environments? Getting sick in space may be worse than on earth. The human microbiome is incredible diverse and not well understood. Your gut contains 100,000s of bacteria groups, virus and other things. A large global study of gut microbiome has revealed thousands of new virus and bacteria types.
- Jennifer Barrila, Shameema F. Sarker, Nicole Hansmeier, Shanshan Yang, Kristina Buss, Natalia Briones, Jin Park, Richard R. Davis, Rebecca J. Forsyth, C. Mark Ott, Kevin Sato, Cristine Kosnik, Anthony Yang, Cheryl Shimoda, Nicole Rayl, Diana Ly, Aaron Landenberger, Stephanie D. Wilson, Naoko Yamazaki, Jason Steel, Camila Montano, Rolf U. Halden, Tom Cannon, Sarah L. Castro-Wallace, Cheryl A. Nickerson. Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. npj Microgravity, 2021; 7 (1) DOI: 10.1038/s41526-021-00136-w
- Luis F. Camarillo-Guerrero, Alexandre Almeida, Guillermo Rangel-Pineros, Robert D. Finn, Trevor D. Lawley. Massive expansion of human gut bacteriophage diversity. Cell, 2021; 184 (4): 1098 DOI: 10.1016/j.cell.2021.01.029

Monday Jan 25, 2021
Episode 415 - Greener ways to make Hydrogen and Ammonia
Monday Jan 25, 2021
Monday Jan 25, 2021
You've probably heard about the wonders of a Hydrogen economy, but how can we make it better for the environment. Synthesizing Ammonia helped feed the planet, but at a huge environmental cost. How can we produce Ammonia without harming the environment? Production of ammonia (and fertilizer) has a huge carbon footprint. How can we clean it up? Hydrogen fuel cells could help decarbonize our economy, but how do we produce it cleanly? Electrolysis can separate hydrogen from water, but how can we do it more efficiently?

Monday Dec 14, 2020
Episode 409 - Stellar Weather, Life on other planets and Space Dust
Monday Dec 14, 2020
Monday Dec 14, 2020
What is the space around the sun like? Cold? Hot? Dusty? How does the space around the Sun change over time? Does the Sun suck up dust in the solar system, or blow it out? What can we learn about stellar weather in our neighbouring stars. Red Dwarfs are one of the most common stars in our Galaxy, but also produce lots of flares. Are rocky planets in Red Dwarf's habitable zone safe from stellar weather?
- Andrew Zic, Tara Murphy, Christene Lynch, George Heald, Emil Lenc, David L. Kaplan, Iver H. Cairns, David Coward, Bruce Gendre, Helen Johnston, Meredith MacGregor, Danny C. Price, Michael S. Wheatland. A Flare-type IV Burst Event from Proxima Centauri and Implications for Space Weather. The Astrophysical Journal, 2020; 905 (1): 23 DOI: 10.3847/1538-4357/abca90
- University of Colorado at Boulder. (2020, December 10). A look at the sun's dusty environment. ScienceDaily. Retrieved December 10, 2020 from www.sciencedaily.com/releases/2020/12/201210112131.htm

Monday Nov 23, 2020
Episode 406 - Lifting mountains out of the ground...with rain
Monday Nov 23, 2020
Monday Nov 23, 2020
Lifting mountains out of the ground with...rain? How do mountain ranges form is a surprisingly difficult question to answer. Complex equations with lots of inputs are tricky to model and solve, but can help us understand the way mountains form. Rain, cosmic particles, sand and the Himalayas can help us understand how mountains form. It's hard to picture, but mountains actually float on the molten rock of the mantle. Make them lighter and they'll rise. Do rapid climate swings change mountains, or do mountains change the climate? The answer is tricky.
- Brandon, M. (2005, July 01). How Erosion Builds Mountains. Retrieved November 22, 2020, from https://www.scientificamerican.com/article/how-erosion-builds-mountains-2005-07/
- B. A. Adams, K. X. Whipple, A. M. Forte, A. M. Heimsath and K. V. Hodges. Climate controls on erosion in tectonically active landscapes. Science Advances, 2020 DOI: 10.1126/sciadv.aaz3166

Monday Oct 12, 2020
Episode 400 - Nobel Prizes, Collaboration, and more sustainable trees
Monday Oct 12, 2020
Monday Oct 12, 2020
The Nobel Prize's legacy on gender and diversity is poor, but are they turning it around? We celebrate the winners of the Nobel Prize, but look critically at the challenges of the system. How do you recognize the collaboration of 100s or 1000s of people with a single award? Is science advanced through singular genius or the collaboration of many? How can CRISPR help us create a more sustainable planet? Growing trees that are easier to process but still able to thrive is possible with CRISPR. How can making trees with less lignin help make a greener planet?
- Advanced information. NobelPrize.org. Nobel Media AB 2020. Sat. 10 Oct 2020.
- Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme, Wout Boerjan. Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-18822-w

Monday Sep 21, 2020
Episode 397 - Ignobel Prize '20 - Physics
Monday Sep 21, 2020
Monday Sep 21, 2020
We celebrate the Ignobel Prizes once again, and this year we take a deep dive into the Physics prize for 2020. Faraday waves (standing waves in liquids or liquid filled objects) look pretty, but can anything filled with like have one? What about a worm? Can you make Faraday waves and resonant frequencies in Worms? What happens when a laser, a worm, and a speaker go into a lab? The result is an Ignobel Prize.
- Maksymov, I.S., Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci Rep 10, 8564 (2020). https://doi.org/10.1038/s41598-020-65295-4
- 2020 Ceremony. (2020, September 18). Retrieved September 18, 2020, from https://www.improbable.com/ig-about/the-30th-first-annual-ig-nobel-prize-ceremony/

Monday Aug 31, 2020
Episode 394 - Travelling through time with telescopes
Monday Aug 31, 2020
Monday Aug 31, 2020
Telescopes can help us travel back in time to the early universe. We can watch galaxies form, the universe have a makeover and giant black holes appear. Using different telescopes we can learn about the cosmic dawn and the cosmic noon. The early universe was hazy and hard for light to travel far. What gave the early universe a makeover to allow starlight to travel? What fed the super hungry super massive black-holes of the early universe? Where did the early black holes find enough food to make them swell to massive sizes? What can we learn from the cosmic noon when most of the stars in the universe were formed?
- NASA/Goddard Space Flight Center. (2020, January 6). Astronomers spot distant galaxy group driving ancient cosmic makeover. ScienceDaily. Retrieved January 11, 2020 from www.sciencedaily.com/releases/2020/01/200106141610.htm
- Emanuele Paolo Farina, Fabrizio Arrigoni-Battaia, Tiago Costa, Fabian Walter, Joseph F. Hennawi, Alyssa B. Drake, Roberto Decarli, Thales A. Gutcke, Chiara Mazzucchelli, Marcel Neeleman, Iskren Georgiev, Anna-Christina Eilers, Frederick B. Davies, Eduardo Bañados, Xiaohui Fan, Masafusa Onoue, Jan-Torge Schindler, Bram P. Venemans, Feige Wang, Jinyi Yang, Sebastian Rabien, Lorenzo Busoni. The REQUIEM Survey. I. A Search for Extended Lyα Nebular Emission Around 31 z > 5.7 Quasars. The Astrophysical Journal, 2019; 887 (2): 196 DOI: 10.3847/1538-4357/ab5847
- T. Mauch et al. The 1.28 GHz MeerKAT DEEP2 Image. The Astrophysical Journal, 2019 [link]

Monday Aug 10, 2020
Episode 391 - Mysteries of the sun, stellar weather and magnetic fields
Monday Aug 10, 2020
Monday Aug 10, 2020
The sun contains many mysteries, which are hard to unravel without special space probes. Why is the sun's corona so much hotter than the sun's surface? What helps form the biggest solar flares? When two arches of the sun's magnetic fields meet it can create some dangerous flares. Solar storms and solar flares can destroy satellites, power grids and spaceships. How can we better predict stellar weather and avoid disaster? Mapping out the Suns magnetic field can help us better predict stellar weather.
- European Space Agency. (2020, July 16). Solar Orbiter's first images reveal 'campfires' on the Sun: ESA/NASA mission returns first data, snaps closest pictures of the Sun. ScienceDaily. Retrieved August 7, 2020 from www.sciencedaily.com/releases/2020/07/200716120652.htm
- Kanya Kusano, Tomoya Iju, Yumi Bamba, Satoshi Inoue. A physics-based method that can predict imminent large solar flares. Science, 2020; 369 (6503): 587 DOI: 10.1126/science.aaz2511

Monday Jul 13, 2020
Episode 387 - Black holes dancing, colliding and third wheeling
Monday Jul 13, 2020
Monday Jul 13, 2020
Scientists have discovered the closet black hole to Earth, but relax it's 1000 Light years away. Ever felt like a third wheel, just be thankful it's not a black hole. A binary star system that can be seen with the naked eye with a lurking black hole. Super massive black holes are hard to get your head around but can unleash tremendous energy. When two super massive black holes dance around each other, the fireworks are spectacular. Predicting when two black holes will graze past each other helps us refine our understanding of the universe.
- Th. Rivinius, D. Baade, P. Hadrava, M. Heida and R. Klement. A naked-eye triple system with a nonaccreting black hole in the inner binary. Astronomy & Astrophysics, 2020 DOI: 10.1051/0004-6361/202038020
- Seppo Laine, Lankeswar Dey, Mauri Valtonen, A. Gopakumar, Stanislaw Zola, S. Komossa, Mark Kidger, Pauli Pihajoki, José L. Gómez, Daniel Caton, Stefano Ciprini, Marek Drozdz, Kosmas Gazeas, Vira Godunova, Shirin Haque, Felix Hildebrandt, Rene Hudec, Helen Jermak, Albert K. H. Kong, Harry Lehto, Alexios Liakos, Katsura Matsumoto, Markus Mugrauer, Tapio Pursimo, Daniel E. Reichart, Andrii Simon, Michal Siwak, Eda Sonbas. Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287. The Astrophysical Journal, 2020; 894 (1): L1 DOI: 10.3847/2041-8213/ab79a4

Monday Jun 29, 2020
Episode 385 - Understanding what makes water stick together
Monday Jun 29, 2020
Monday Jun 29, 2020
What seems simple but it's deceptively complex. What makes water molecules stick together, or ice to float on top? Water has many mysteries, like ice floating on liquid. The key lies in the energy distribution. Shooting super high frequency lasers at water can help figure out what makes ice float or water stick together. Cheap and efficient ways to clean water is essential for saving lives across the globe. How can cyrstaline sponges help soak up bad chemicals like hexavalent chromium.
- Martina Havenith-Newen, Raffael Schwan, Chen Qu, Devendra Mani, Nitish Pal, Gerhard Schwaab, Joel M. Bowman, Gregory Tschumper. Observation of the low frequency spectrum of water trimer as a sensitive test of the water trimer potential and the dipole moment surface. Angewandte Chemie International Edition, 2020; DOI: 10.1002/anie.202003851
- Bardiya Valizadeh, Tu N. Nguyen, Stavroula Kampouri, Daniel T. Sun, Mounir D. Mensi, Kyriakos Stylianou, Berend Smit, Wendy L. Queen. A novel integrated Cr(vi) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020; DOI: 10.1039/d0ta01046d

Monday Jun 15, 2020
Episode 383 - Pulsars and fast radio bursts
Monday Jun 15, 2020
Monday Jun 15, 2020
From pulsars to fast radio bursts, we look at interstellar mysteries. Just how do Pulsars work? How long does it take for a Pulsar to be fed by surrounding matter? All that accretion disk matter spillaring around a Pulsar takes a long time to get there. What are Fast Radio Bursts? mysterious signals from deep space, or wobbly highly magnetised neutron stars? Magnetars, fast radio bursts and flares. What causes a fast radio burst in space to repeat?
- D R Lorimer, E F Keane, A Karastergiou, M Caleb, R P Breton, C G Bassa, D Agarwal, V Morello, B W Stappers, M B Mickaliger, K M Rajwade. Possible periodic activity in the repeating FRB 121102. Monthly Notices of the Royal Astronomical Society, 2020; 495 (4): 3551 DOI: 10.1093/mnras/staa1237
- Brian D Metzger, Ben Margalit, Lorenzo Sironi, Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves, Monthly Notices of the Royal Astronomical Society, Volume 485, Issue 3, May 2019, Pages 4091–4106, https://doi.org/10.1093/mnras/stz700
- Hall, S., & Quanta Magazine. (n.d.). A Surprise Discovery Points to the Source of Fast Radio Bursts. Retrieved June 13, 2020, from https://www.quantamagazine.org/a-surprise-discovery-shows-magnetars-create-fast-radio-bursts-20200611/
- Monash University. (2020, June 3). Astronomers capture a pulsar 'powering up'. ScienceDaily. Retrieved June 13, 2020 from www.sciencedaily.com/releases/2020/06/200603104549.htm
- A. J. Goodwin and D. M. Russell and D. K. Galloway et al, A 12 day delay between optical and X-ray activity during outburst rise in a low-mass X-ray binary, arXiv, astro-ph.HE, 2006.02872, 2020

Monday May 04, 2020
Episode 377 - Hubble turns 30 and still takes amazing images
Monday May 04, 2020
Monday May 04, 2020
We celebrate the life and achievements of Hubble Space telescope and all that have worked on it over it's 30 years in space (and many more before that). We look at the challenges faced by Hubble early on, and the amazing science it is helping contribute to today. From stars being born, to comets tearing themselves apart Hubble sheds light on amazing science. The images Hubble takes are iconic and often look like science fiction. Hubble manages to celebrate it's birthday by capturing images of a comet tearing itself apart.
- Information@eso.org. (n.d.). Hubble Celebrates its 30th Anniversary with a Tapestry of Blazing Starbirth. Retrieved May 02, 2020, from https://www.spacetelescope.org/news/heic2007/
- ESA/Hubble Information Centre. (2020, April 28). Hubble captures breakup of comet ATLAS. ScienceDaily. Retrieved May 1, 2020 from www.sciencedaily.com/releases/2020/04/200428142410.htm

Monday Feb 24, 2020
Episode 367 - Sustainable and green Chemistry
Monday Feb 24, 2020
Monday Feb 24, 2020
Making chemistry green and sustainable, from cheaper catalyst to sorting solvents. How can you make catalysts cheaper and re-usable? Is there a cheaper catalyst to breakdown CO2? How can we make a circular carbon economy? Solvents play an important role in chemistry so how do you greenly find the right match? Green chemistry can be made more efficient using CO2.
- Youngdong Song, Ercan Ozdemir, Sreerangappa Ramesh, Aldiar Adishev, Saravanan Subramanian, Aadesh Harale, Mohammed Albuali, Bandar Abdullah Fadhel, Aqil Jamal, Dohyun Moon, Sun Hee Choi, Cafer T. Yavuz. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science, 2020; 367 (6479): 777 DOI: 10.1126/science.aav2412
- Suyong Han, Keshav Raghuvanshi, Milad Abolhasani. Accelerated Material-Efficient Investigation of Switchable Hydrophilicity Solvents for Energy-Efficient Solvent Recovery. ACS Sustainable Chemistry & Engineering, 2020; DOI: 10.1021/acssuschemeng.9b07304

Monday Feb 17, 2020
Episode 366 - The YORP Effect, Star Brawls and Solar wind
Monday Feb 17, 2020
Monday Feb 17, 2020
What happens when stars brawl? What do they leave behind? When stars are dying they take down everything and everything around them from asteroids to other stars. What is the YORP effect? How do some tiny solar particles destroy an asteroid? Spiraling out of control, asteroids get YORP-ed at the end of a star's life. When a star gets to the end of it's life, it may swell in size, taking out asteroids and nearby stars.
- H. Olofsson, T. Khouri, M. Maercker, P. Bergman, L. Doan, D. Tafoya, W. H. T. Vlemmings, E. M. L. Humphreys, M. Lindqvist, L. Nyman, S. Ramstedt. HD 101584: circumstellar characteristics and evolutionary status. Astronomy & Astrophysics, 2019; 623: A153 DOI: 10.1051/0004-6361/201834897
- Dimitri Veras, Daniel J Scheeres. Post-main-sequence debris from rotation-induced YORP break-up of small bodies – II. Multiple fissions, internal strengths, and binary production. Monthly Notices of the Royal Astronomical Society, 2020; 492 (2): 2437 DOI: 10.1093/mnras/stz3565
- M. I. Desai, D. G. Mitchell, J. R. Szalay, E. C. Roelof, J. Giacalone, M. E. Hill, D. J. McComas, E. R. Christian, N. A. Schwadron, R. L. McNutt Jr., M. E. Wiedenbeck, C. Joyce, C. M. S. Cohen, R. W. Ebert, M. A. Dayeh, R. C. Allen, A. J. Davis, S. M. Krimigis, R. A. Leske, W. H. Matthaeus, O. Malandraki, R. A. Mewaldt, A. Labrador, E. C. Stone, S. D. Bale, M. Pulupa, R. J. MacDowall, J. C. Kasper. Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe’s First Two Orbits. The Astrophysical Journal Supplement Series, 2020; 246 (2): 56 DOI: 10.3847/1538-4365/ab65ef

Monday Jan 13, 2020
Episode 361 - Fast Radio Bursts, Cosmic Rays and Antarctica
Monday Jan 13, 2020
Monday Jan 13, 2020
From Fast Radio Bursts to Cosmic rays, interstellar mystery solving is a team effort. Mysterious repeating signals from space are tricky to localize, like spotting a person on the moon from here on Earth. What can fast radio bursts from billions of light years away tell us about the nature of the universe? How do you hunt for the source of a mysterious radio burst billions of light years away? How does a tiger, a balloon and Antarctica help us understand Supernova? What's the best place to hunt for cosmic rays; floating above Antarctica with a Super Tiger.
- B. Marcote, K. Nimmo, J. W. T. Hessels, S. P. Tendulkar, C. G. Bassa, Z. Paragi, A. Keimpema, M. Bhardwaj, R. Karuppusamy, V. M. Kaspi, C. J. Law, D. Michilli, K. Aggarwal, B. Andersen, A. M. Archibald, K. Bandura, G. C. Bower, P. J. Boyle, C. Brar, S. Burke-Spolaor, B. J. Butler, T. Cassanelli, P. Chawla, P. Demorest, M. Dobbs, E. Fonseca, U. Giri, D. C. Good, K. Gourdji, A. Josephy, A. Yu. Kirichenko, F. Kirsten, T. L. Landecker, D. Lang, T. J. W. Lazio, D. Z. Li, H.-H. Lin, J. D. Linford, K. Masui, J. Mena-Parra, A. Naidu, C. Ng, C. Patel, U.-L. Pen, Z. Pleunis, M. Rafiei-Ravandi, M. Rahman, A. Renard, P. Scholz, S. R. Siegel, K. M. Smith, I. H. Stairs, K. Vanderlinde, A. V. Zwaniga. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020; DOI: 10.1038/s41586-019-1866-z
- Ogliore, T. (2020, January 10). SuperTIGER on its second prowl -- 130,000 feet above Antarctica: The Source: Washington University in St. Louis. Retrieved from https://source.wustl.edu/2020/01/supertiger-on-its-second-prowl-130000-feet-above-antarctica/.

Monday Oct 14, 2019
Episode 348 - More efficient Lithium-Ion batteries and Organic Batteries
Monday Oct 14, 2019
Monday Oct 14, 2019
We launch from the Nobel Prize for Chemistry 2019 into current battery research and development. Creating the ubiquitous Lithium Ion battery took decades of collaborative research across the globe. How are scientists working together today to make the new generation of batteries? Can we improve LI batteries with new electrolyte mixes? How can we use Silicon instead of graphite in our batteries to give them a boost? Is it possible to make an organic recyclable battery? How can we use proteins and peptides to make organic batteries? Can we make batteries without damaging the environment?
References:
- Nobel Foundation. (2019, October 9). Nobel Prize in Chemistry 2019: Lithium-ion batteries. ScienceDaily. Retrieved October 11, 2019 from www.sciencedaily.com/releases/2019/10/191009082508.htm
- Binghong Han, Chen Liao, Fulya Dogan, Stephen E. Trask, Saul H. Lapidus, John T. Vaughey, Baris Key. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca). ACS Applied Materials & Interfaces, 2019; 11 (33): 29780 DOI: 10.1021/acsami.9b07270
- American Chemical Society. (2019, August 26). Producing protein batteries for safer, environmentally friendly power storage. ScienceDaily. Retrieved October 12, 2019 from www.sciencedaily.com/releases/2019/08/190826092322.htm5

Monday Sep 16, 2019
Monday Sep 16, 2019
We look at galactic events, where galaxies collide, stars form and emptiness of space. Space is so unfathomably huge, but its still possible for galaxies to collide. The Milky Way was formed through one of this violent collisions over 10 billion years ago. Space seems empty but there are sections of space that are emptier than others, the great Local Void around the Local group. Stars forming in galaxies rely on gas clouds, but what does it take to form a star? What do you need to really make a good nursery for stars?
- R. Brent Tully, Daniel Pomarède, Romain Graziani, Hélène M. Courtois, Yehuda Hoffman, Edward J. Shaya. Cosmicflows-3: Cosmography of the Local Void. The Astrophysical Journal, 2019; 880 (1): 24 DOI: 10.3847/1538-4357/ab2597
- Kazufumi Torii, Shinji Fujita, Atsushi Nishimura, Kazuki Tokuda, Mikito Kohno, Kengo Tachihara, Shu-ichiro Inutsuka, Mitsuhiro Matsuo, Mika Kuriki, Yuya Tsuda, Tetsuhiro Minamidani, Tomofumi Umemoto, Nario Kuno, Yusuke Miyamoto. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). V. Dense gas mass fraction of molecular gas in the Galactic plane. Publications of the Astronomical Society of Japan, 2019; DOI: 10.1093/pasj/psz033
- Carme Gallart, Edouard J. Bernard, Chris B. Brook, Tomás Ruiz-Lara, Santi Cassisi, Vanessa Hill, Matteo Monelli. Uncovering the birth of the Milky Way through accurate stellar ages with Gaia. Nature Astronomy, 2019; DOI: 10.1038/s41550-019-0829-5