Loading Downloads
442Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

July 19, 2021

Episode 440 - Turning off plants with a switch of a light

Turning off plants with a switch of a light. How can optogenetics be used to turn off photosynthesis. Stomata cells help a plant from feasting too much in times of famine. Stomata cells regulate how much photosynthesis plants undertake, but can they be regulated with light? How can Yeast be used to help plants fight back against fungus. Fungal infections can devastate crops and plants, but can we avoid dangerous fungicides? How can we protect plants from, fungi without damaging the environment? Can yeast grown proteins help stop fungal infections without killing all fungi?

  1. Tiffany Chiu, Anita Behari, Justin W. Chartron, Alexander Putman, Yanran Li. Exploring the potential of engineering polygalacturonase‐inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnology and Bioengineering, 2021; DOI: 10.1002/bit.27845
  2. Shouguang Huang, Meiqi Ding, M. Rob G. Roelfsema, Ingo Dreyer, Sönke Scherzer, Khaled A. S. Al-Rasheid, Shiqiang Gao, Georg Nagel, Rainer Hedrich, Kai R. Konrad. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1Science Advances, 2021; 7 (28): eabg4619 DOI: 10.1126/sciadv.abg4619
June 21, 2021

Episode 436 - Squeezing and grinding to create next generation materials from humble begingings

Squeezing and grinding to create next generation materials from humble beginnings. Changing magnetic field by changing shape could open the door for more efficient computers. Magnetostriction causes that 'hum' you hear from electronics but it can be harnessed for good. Large electrical devices like transformers or fluorescent tubes shape influences their magnetic field. The next generation of computers may harness the way magnetic fields and physical shape can be linked. Forget rare earth metals, there is a more efficient way to make high powered computer chips out of humble iron and gallium. Luminescent polymers can be found in fancy OLED screens but are complex to produce. How can you make fancy luminescent polymers from generic polymers? By grinding them. A unique way of grinding and rolling basic generic polymers could create powerful luminescent polymers for use in high end screens, lasers and bio-imaging.

  1. P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom, J. T. Heron. Engineering new limits to magnetostriction through metastability in iron-gallium alloys. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22793-x
  2. Koji Kubota, Naoki Toyoshima, Daiyo Miura, Julong Jiang, Satoshi Maeda, Mingoo Jin, Hajime Ito. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angewandte Chemie International Edition, 2021; DOI: 10.1002/anie.202105381
May 10, 2021

Episode 430 - Using Corn to clean water, and new wind turbine designs

Clever engineering can turn waste products into planet cleaning tools. Corn is America's biggest crop, but it's incredibly wasteful. Corn waste can be given a second life as activated carbon to help clean water. Corn waste makes for an efficient water when it's turned into activated charcoal. Wind turbines have to be carefully placed and located to maximise their efficiency. When designing a wind farm, the location and style of the turbine can greatly impact generation. Which design is better for wind turbines; vertical or horizontal? Vertical wind turbines aren't as common, but they can work together to boost efficiency.

  1. Mark Gale, Tu Nguyen, Marissa Moreno, Kandis Leslie Gilliard-AbdulAziz. Physiochemical Properties of Biochar and Activated Carbon from Biomass Residue: Influence of Process Conditions to Adsorbent PropertiesACS Omega, 2021; 6 (15): 10224 DOI: 10.1021/acsomega.1c00530
  2. Joachim Toftegaard Hansen, Mahak Mahak, Iakovos Tzanakis. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approachRenewable Energy, 2021; 171: 1371 DOI: 10.1016/j.renene.2021.03.001
March 15, 2021

Episode 422 - Squid blending into starlight with Bio-luminescent bacteria

Squid can change colours, reflect light and blend in with their surroundings. How does the changing colours on squid skin work? What proteins and structures enable squid skin to reflect and amplify varying light? Squid can blend themselves into the starlight with the aid of bio-luminescence. The symbiotic relationship between bacteria and squid starts right after birth, and helps them shine to avoid predators and catch prey. A baby squid may not start out bioluminescent but a rapid spread of the right bacteria turns on the lights.

  1. Katherine E. Zink, Denise A. Ludvik, Phillip R. Lazzara, Terry W. Moore, Mark J. Mandel, Laura M. Sanchez. A Small Molecule Coordinates Symbiotic Behaviors in a Host OrganmBio, 2021; 12 (2) DOI: 10.1128/mBio.03637-20
  2. Daniel E. Morse, Esther Taxon. Reflectin needs its intensity amplifier: Realizing the potential of tunable structural biophotonicsApplied Physics Letters, 2020; 117 (22): 220501 DOI: 10.1063/5.0026546
January 25, 2021

Episode 415 - Greener ways to make Hydrogen and Ammonia

You've probably heard about the wonders of a Hydrogen economy, but how can we make it better for the environment. Synthesizing Ammonia helped feed the planet, but at a huge environmental cost. How can we produce Ammonia without harming the environment? Production of ammonia (and fertilizer) has a huge carbon footprint. How can we clean it up? Hydrogen fuel cells could help decarbonize our economy, but how do we produce it cleanly? Electrolysis can separate hydrogen from water, but how can we do it more efficiently? 

January 4, 2021

Episode 412 - Magnetic Glues and Chemical gears

Waiting for glue to cure can take a long time, but can magnets speed it up? We use epoxy to glue together so much of the modern world, but it takes a lot of energy to cure it. Is there a way to make epoxy glues more 'energy efficient' with magnets? Magnetically activate glues can literally stick your shoes together. Gears are one of the most fundamental mechanical elements, can we get chemicals to form gears themselves. A 1mm thick sheet with some chemicals and you can get gears to form themselves. Small gear trains and mechanical motion can power soft and flexible machines.

References:

  1. Richa Chaudhary, Varun Chaudhary, Raju V. Ramanujan, Terry W.J. Steele. Magnetocuring of temperature failsafe epoxy adhesivesApplied Materials Today, 2020; 21: 100824 DOI: 10.1016/j.apmt.2020.100824
  2. Abhrajit Laskar, Oleg E. Shklyaev, Anna C. Balazs. Self-Morphing, Chemically Driven Gears and MachinesMatter, 2020 DOI: 10.1016/j.matt.2020.11.014
November 9, 2020

Episode 404 - Ants , Acid, and Yeast that grow acid

Ants, acid and yeast that can grow their own acid. Ants use formic acid to keep their colony safe inside and out. By ingesting formic acid, Ants are able to ward off dangerous pathogens. Passing food with your mouth isn't very socially distant, but ants eat acid to make it safe. How can yeast be used to 'grow' materials needed to make perfume and dyes? Succinic acid is a useful chemical precursor, but its possible to grow yeast that are able yo produce on scale as a by product. Finding just the right genes with CRISPR and super computers can turn yeast into a chemical production powerhouse.

  1. Simon Tragust, Claudia Herrmann, Jane Häfner, Ronja Braasch, Christina Tilgen, Maria Hoock, Margarita Artemis Milidakis, Roy Gross, Heike Feldhaar. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife, 2020; 9 DOI: 10.7554/eLife.60287
  2. Patrick F. Suthers, Hoang V. Dinh, Zia Fatma, Yihui Shen, Siu Hung Joshua Chan, Joshua D. Rabinowitz, Huimin Zhao, Costas D. Maranas. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020; 11: e00148 DOI: 10.1016/j.mec.2020.e00148
November 2, 2020

Episode 403 - Taking pollutants out of our water, factories and environment

How can we take pollutants easily out of our water, factories and environment? PFAS contamination is difficult to clear up, but a new method could attract, trap and destroy it with electrodes. PFAS can be found in many things, but taking it out of an area has often been very difficult. Using a tunenable electrode, in 3 hours you could extract and destroy PFAS in contaminated water. A combined clay and glass filter could neatly trap and extract CO2 from a gassy mixture. industrial processes often produce CO2 amongst other gases, but how can you quickly only separate out that CO2, reuse it and prevent it from being emitted? Lead in drinking water is a serious issue,but understanding the amount of exposure is difficult. A new method for analysing lead in drinking water tips acid onto 'filled' filters.

  1. Kwiyong Kim, Paola Baldaguez Medina, Johannes Elbert, Emmanuel Kayiwa, Roland D. Cusick, Yujie Men, Xiao Su. Molecular Tuning of Redox‐Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020; 2004635 DOI: 10.1002/adfm.202004635
  2. Basic Information on PFAS. (2018, December 06). Retrieved October 31, 2020, from https://www.epa.gov/pfas/basic-information-pfas
  3. Martin Rieß, Renée Siegel, Jürgen Senker, Josef Breu. Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020; 100210 DOI: 10.1016/j.xcrp.2020.100210
  4. Weiyi Pan, Elizabeth R. Johnson, Daniel E. Giammar. Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. Environmental Science: Water Research & Technology, 2020; 6 (10): 2734 DOI: 10.1039/d0ew00496k
October 5, 2020

Episode 399 - Avoiding Fatbergs and Breaking down Plastic

Breaking up fatbergs, and breaking down plastic with smarter materials. Sewers are a dangerous place, with fat bergs and sulphuric acid, but can they be cleaned up? Portland Cement has helped build the modern world, but does it also cause problems in our sewers? how can we stop our sewers from corroding with better materials? Breaking down plastic takes a long time, but through in a super team of enzymes and it could be done in days. A super team of enzymes helps break down plastic and could lead to a circular economy.

  1. Brandon C. Knott, Erika Erickson, Mark D. Allen, Japheth E. Gado, Rosie Graham, Fiona L. Kearns, Isabel Pardo, Ece Topuzlu, Jared J. Anderson, Harry P. Austin, Graham Dominick, Christopher W. Johnson, Nicholas A. Rorrer, Caralyn J. Szostkiewicz, Valérie Copié, Christina M. Payne, H. Lee Woodcock, Bryon S. Donohoe, Gregg T. Beckham, John E. McGeehan. Characterization and engineering of a two-enzyme system for plastics depolymerizationProceedings of the National Academy of Sciences, 2020; 202006753 DOI: 10.1073/pnas.2006753117
  2. Rajeev Roychand, Jie Li, Saman De Silva, Mohammad Saberian, David Law, Biplob Kumar Pramanik. Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergsResources, Conservation and Recycling, 2021; 164: 105166 DOI: 10.1016/j.resconrec.2020.105166
September 21, 2020

Episode 397 - Ignobel Prize ‘20 - Physics

We celebrate the Ignobel Prizes once again, and this year we take a deep dive into the Physics prize for 2020. Faraday waves (standing waves in liquids or liquid filled objects) look pretty, but can anything filled with like have one? What about a worm? Can you make Faraday waves and resonant frequencies in Worms? What happens when a laser, a worm, and a speaker go into a lab? The result is an Ignobel Prize.

  1. Maksymov, I.S., Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci Rep 10, 8564 (2020). https://doi.org/10.1038/s41598-020-65295-4
  2. 2020 Ceremony. (2020, September 18). Retrieved September 18, 2020, from https://www.improbable.com/ig-about/the-30th-first-annual-ig-nobel-prize-ceremony/
September 14, 2020

Episode 396 - Is that food safe to eat

Is that food safe to eat? How can you tell if food has gone bad beyond just reading a date? Ever been confused by best before or use by? A new type of label could make it a mater of colors. Color based labels could help detect if your food has gone bad or is contaminated by bacteria. How can we study the microbes that live inside our intestines? The gut microbiome is incredibly fascinating but difficult to study without damaging it. A tiny pill that takes snapshots of micro organisms inside your stomach as it passes through.

  1. Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply ChainAdvanced Functional Materials, 2020 DOI: 10.1002/adfm.202005370
  2. Lu Chen, Lina Gruzinskyte, Steffen Lynge Jørgensen, Anja Boisen, Sarvesh Kumar Srivastava. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and BiomarkersACS Nano, 2020; DOI: 10.1021/acsnano.0c05426
August 3, 2020

Episode 390 - Cool fabrics, melting ice and recycling e-waste

From cool fabrics, to melting ice and recycling e-waste. How can a fabric let air through, but keep water out? Clothing that is breathable, water resistant and thermally efficient hits the sweet spot of a super fabric. Making clothes more efficient at cooling but also self cleaning can reduce our reliance on air conditioning. Using electricity and some polymers we can spin up some new cool clothing fabrics. Melting ice in your frozen over freezer can be made easier with biphillic materials. Materials that both hate and love water at the same time, can help melt ice and make heater exchangers more efficient. Recycling e-waste can be tricky, but what if we could use the by-products to  make new, stronger coatings for steel? Turning e-waste into a steel boosting coating.

  1. Rumana Hossain, Veena Sahajwalla. Material Microsurgery: Selective Synthesis of Materials via High-Temperature Chemistry for Microrecycling of Electronic Waste. ACS Omega, 2020; 5 (28): 17062 DOI: 10.1021/acsomega.0c00485
  2. Xi Yu, Yang Li, Xianfeng Wang, Yang Si, Jianyong Yu, Bin Ding. Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS Applied Materials & Interfaces, 2020; 12 (28): 32078 DOI: 10.1021/acsami.0c04486
  3. Yashraj Gurumukhi, Shreyas Chavan, Soumyadip Sett, Kalyan Boyina, Srivasupradha Ramesh, Peter Sokalski, Kirk Fortelka, Maury Lira, Deokgeun Park, Juo-Yun Chen, Shreyas Hegde, Nenad Miljkovic. Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020; DOI: 10.1016/j.matt.2020.06.029
July 20, 2020

Episode 388 - Cleaning, drinking and shaping water

Making water safe to drink, from evaporation to treatment. How do you simply evaporate water to make it safe? A piece of aluminium and a laser can hold the key to providing cheap and safe drinking water to the world. Pharmaceutical waste can build up in waster water, so how can it be treated? How can two little electrodes deal with the problem of pharmaceutical waste in water? Changing the course of a river can have huge consequences. What can we learn by studying the changes caused by the Panama Canal?

  1. Subhash C. Singh, Mohamed ElKabbash, Zilong Li, Xiaohan Li, Bhabesh Regmi, Matthew Madsen, Sohail A. Jalil, Zhibing Zhan, Jihua Zhang, Chunlei Guo. Solar-trackable super-wicking black metal panel for photothermal water sanitationNature Sustainability, 2020; DOI: 10.1038/s41893-020-0566-x
  2. Yassine Ouarda, Clément Trellu, Geoffroy Lesage, Matthieu Rivallin, Patrick Drogui, Marc Cretin. Electro-oxidation of secondary effluents from various wastewater plants for the removal of acetaminophen and dissolved organic matterScience of The Total Environment, 2020; 738: 140352 DOI: 10.1016/j.scitotenv.2020.140352
  3. Jorge Salgado, María I. Vélez, Catalina González-Arango, Neil L. Rose, Handong Yang, Carme Huguet, Juan S. Camacho, Aaron O'Dea. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basinScience of The Total Environment, 2020; 729: 138444 DOI: 10.1016/j.scitotenv.2020.138444
June 29, 2020

Episode 385 - Understanding what makes water stick together

What seems simple but it's deceptively complex. What makes water molecules stick together, or ice to float on top? Water has many mysteries, like ice floating on liquid. The key lies in the energy distribution. Shooting super high frequency lasers at water can help figure out what makes ice float or water stick together. Cheap and efficient ways to clean water is essential for saving lives across the globe. How can cyrstaline sponges help soak up bad chemicals like hexavalent chromium.

  1. Martina Havenith-Newen, Raffael Schwan, Chen Qu, Devendra Mani, Nitish Pal, Gerhard Schwaab, Joel M. Bowman, Gregory Tschumper. Observation of the low frequency spectrum of water trimer as a sensitive test of the water trimer potential and the dipole moment surface. Angewandte Chemie International Edition, 2020; DOI: 10.1002/anie.202003851
  2. Bardiya Valizadeh, Tu N. Nguyen, Stavroula Kampouri, Daniel T. Sun, Mounir D. Mensi, Kyriakos Stylianou, Berend Smit, Wendy L. Queen. A novel integrated Cr(vi) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020; DOI: 10.1039/d0ta01046d
May 11, 2020

Episode 378 - Maple Syrup Golden tongues and antioxidants

Taste testing maple syrup and long lasting antioxidants. How do you judge the taste of something as complex as maple syrup? How can a golden tongue help find gold, silver and bronze maple syrups? Antioxidants can keep food fresh and wounds safe, so how can they be made long lasting? Tannic acid often found in wines can make great antioxidants, but how to make their chemical effect long lasting? Fine woven meshes embedded with antioxidants can help flexible wrap food and wounds to keep them safe.

  1. Simon Forest, Trevor Théorêt, Julien Coutu, Jean-Francois Masson. A high-throughput plasmonic tongue using an aggregation assay and nonspecific interactions: classification of taste profiles in maple syrupAnalytical Methods, 2020; DOI: 10.1039/C9AY01942A
  2. Adwait Gaikwad, Hanna Hlushko, Parvin Karimineghlani, Victor Selin, Svetlana A. Sukhishvili. Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant ActivityACS Applied Materials & Interfaces, 2020; 12 (9): 11026 DOI: 10.1021/acsami.9b23212
April 20, 2020

Episode 375 - Solar Panels that work at night and on greenhouses

From solar panels on greenhouses to ones that work at night. How can you use radiant heat to make a solar panel work at night? Is there a way to harness energy from the sun even at night? Can you cover a greenhouse with solar panels without destroying your crops? What's the tipping point for harvesting solar energy for your greenhouse? Balancing the light needs of solar panels and of crops in a greenhouse. How does the photosynthesis process know which path to take? Shinning a light on the photosynthetic process.

  1. Tristan Deppe, Jeremy N. Munday. Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling with Deep SpaceACS Photonics, 2019; 7 (1): 1 DOI: 10.1021/acsphotonics.9b00679
  2. Eshwar Ravishankar, Ronald E. Booth, Carole Saravitz, Heike Sederoff, Harald W. Ade, Brendan T. O’Connor. Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar CellsJoule, 2020; DOI: 10.1016/j.joule.2019.12.018
  3. Philip D. Laible, Deborah K. Hanson, James C. Buhrmaster, Gregory A. Tira, Kaitlyn M. Faries, Dewey Holten, Christine Kirmaier. Switching sides—Reengineered primary charge separation in the bacterial photosynthetic reaction centerProceedings of the National Academy of Sciences, 2020; 117 (2): 865 DOI: 10.1073/pnas.1916119117
April 13, 2020

Episode 374 - Lasers, Metal and Insect wings vs Bacteria

Taking the fight to bacteria with lasers, metal and insect wings. How can lasers help make a material into a bacteria destroyer? Metal in fantasy has demon slaying properties, but how can it help fight bacteria? What can we learn from insect wings to help make safer implants? What is it about silver that makes it good for killing bacteria (and werewolves). Why are metals so dangerous for bacteria? How can we treat and use metal to make medical devices safer from bacteria?

  1. Vidhya Selvamani, Amin Zareei, Ahmed Elkashif, Murali Kannan Maruthamuthu, Shirisha Chittiboyina, Davide Delisi, Zheng Li, Lirong Cai, Vilas G. Pol, Mohamed N. Seleem, Rahim Rahimi. Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing. Advanced Materials Interfaces, 2020; 1901890 DOI: 10.1002/admi.201901890
  2. Asmaa A. Sadoon, Prabhat Khadka, Jack Freeland, Ravi Kumar Gundampati, Ryan H. Manso, Mason Ruiz, Venkata R. Krishnamurthi, Suresh Kumar Thallapuranam, Jingyi Chen, Yong Wang. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria. Applied and Environmental Microbiology, 2020; 86 (6) DOI: 10.1128/AEM.02479-19
  3. J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A. H. Nobbs, B. Su. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-15471-x
March 30, 2020

Episode 372 - Flexible and wearable electronics

How can we make flexible electronics for our clothing? What does it take to make a screen that's flexible without relying on plastics? What aquatic by product can help make biodegradable, flexible electronics? Why do your towels go hard when you dry them in the sun? What happens on cotton fibres to make them stiffen up in the sun? How does fabric softener work - we're really not sure.

  1. Nara Kim, Samuel Lienemann, Ioannis Petsagkourakis, Desalegn Alemu Mengistie, Seyoung Kee, Thomas Ederth, Viktor Gueskine, Philippe Leclère, Roberto Lazzaroni, Xavier Crispin, Klas Tybrandt. Elastic conducting polymer composites in thermoelectric modulesNature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-15135-w
  2. Xiaopan Zhang, Tengyang Ye, Xianghao Meng, Zhihui Tian, Lihua Pang, Yaojie Han, Hai Li, Gang Lu, Fei Xiu, Hai-Dong Yu, Juqing Liu, Wei Huang. Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent DevicesACS Nano, 2020; DOI: 10.1021/acsnano.9b09880
  3. Takako Igarashi, Masato Hoshi, Koichi Nakamura, Takeshi Kaharu, Ken-ichiro Murata. Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared SpectroscopyThe Journal of Physical Chemistry C, 2020; 124 (7): 4196 DOI: 10.1021/acs.jpcc.0c00423
February 24, 2020

Episode 367 - Sustainable and green Chemistry

Making chemistry green and sustainable, from cheaper catalyst to sorting solvents. How can you make catalysts cheaper and re-usable? Is there a cheaper catalyst to breakdown CO2? How can we make a circular carbon economy? Solvents play an important role in chemistry so how do you greenly find the right match? Green chemistry can be made more efficient using CO2.

  1. Youngdong Song, Ercan Ozdemir, Sreerangappa Ramesh, Aldiar Adishev, Saravanan Subramanian, Aadesh Harale, Mohammed Albuali, Bandar Abdullah Fadhel, Aqil Jamal, Dohyun Moon, Sun Hee Choi, Cafer T. Yavuz. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgOScience, 2020; 367 (6479): 777 DOI: 10.1126/science.aav2412
  2. Suyong Han, Keshav Raghuvanshi, Milad Abolhasani. Accelerated Material-Efficient Investigation of Switchable Hydrophilicity Solvents for Energy-Efficient Solvent RecoveryACS Sustainable Chemistry & Engineering, 2020; DOI: 10.1021/acssuschemeng.9b07304
October 28, 2019

Episode 350 - Developing, tracking, recycling new materials

Smart phones, computers, televisions and even children's toys are part of what makes our modern world so exciting. But these often rely on plastics and rare earth metals which are hard to recycle. Are there efficient ways to capture all those rare earth metals? How are rare earth metals in old phones recycled today, and can we make it better? Knowing which bin to put plastic in is difficult, so what if there was a more universal way to recycle plastics? How does turning plastic into a gas with the help of steam help create a circular plastic economy? How can some steam power help crack plastics back into their most basic forms? Is it possible to recycle plastics without to build whole new plastic refineries? Regulation is often playing catch up to making materials safe. Are the latest generation of 'safe' fire retardants any safer than those that came before? 

 

References:

Robert F. Higgins, Thibault Cheisson, Bren E. Cole, Brian C. Manor, Patrick J. Carroll, Eric J Schelter. Magnetic Field Directed Rare-Earth Separations. Angewandte Chemie International Edition, 2019; DOI: 10.1002/anie.201911606

Arlene Blum, Mamta Behl, Linda S. Birnbaum, Miriam L. Diamond, Allison Phillips, Veena Singla, Nisha S. Sipes, Heather M. Stapleton, Marta Venier. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environmental Science & Technology Letters, 2019; DOI: 10.1021/acs.estlett.9b00582

Henrik Thunman, Teresa Berdugo Vilches, Martin Seemann, Jelena Maric, Isabel Cañete Vela, Sébastien Pissot, Huong N.T. Nguyen. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies, 2019; 22: e00124 DOI: 10.1016/j.susmat.2019.e00124