Loading Downloads
432Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

April 26, 2021

Episode 428 - Lightning and Early life on earth

What kicked off early life on earth? Organic chemistry and early life need the right minerals to be present and accessible. What helped unlock early minerals on earth like phosphorous to kick start life? Lightning strikes seem rare, but they're much more frequent than meteorites. Early life on Earth could have been helped along through lightning strikes and meteorites. DNA, RNA and Proteins are locked in a complex dance, but which came first. DNA can't replicate without the help of protein and RNA, so how did we develop DNA in the first place? Is it possible for RNA to replicate on it's own?
References:

  1. Benjamin L. Hess, Sandra Piazolo, Jason Harvey. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early EarthNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-21849-2
  2. Alexandra Kühnlein, Simon A Lanzmich, Dieter Braun. tRNA sequences can assemble into a replicatoreLife, 2021; 10 DOI: 10.7554/eLife.63431
April 19, 2021

Episode 427 - RNA protecting your brain

How does RNA work to protect your brain and keep it safe after a traumatic event? Micro RNA can play an important role in healthy brain development. Without key micro RNA, the development of the brain can run out of control. Without key microRNA, your can develop neurodevelopmental disordersWithout oxygen your neurons starve, so how can you protect them?  How can you use mRNA to make neurons more resilient and recover after a lack of oxygen? Getting proteins across the blood brain barrier is tricky, so can they be snuck in via mRNA? Using mRNA, you can produce proteins to add brain recovery right where they're needed most.
Reference:

  1. Vijay Swahari, Ayumi Nakamura, Emilie Hollville, Hume Stroud, Jeremy M. Simon, Travis S. Ptacek, Matthew V. Beck, Cornelius Flowers, Jiami Guo, Charlotte Plestant, Jie Liang, C. Lisa Kurtz, Matt Kanke, Scott M. Hammond, You-Wen He, E.S. Anton, Praveen Sethupathy, Sheryl S. Moy, Michael E. Greenberg, Mohanish Deshmukh. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylationCell Reports, 2021; 35 (1): 108946 DOI: 10.1016/j.celrep.2021.108946
  2. Merlin Crossley,Dean of Science and Professor of Molecular Biology. (2021, April 09). Explainer: What is rna? Retrieved April 13, 2021, from https://theconversation.com/explainer-what-is-rna-15169
  3. Yuta Fukushima, Satoshi Uchida, Hideaki Imai, Hirofumi Nakatomi, Kazunori Kataoka, Nobuhito Saito, Keiji Itaka. Treatment of ischemic neuronal death by introducing brain-derived neurotrophic factor mRNA using polyplex nanomicelleBiomaterials, 2021; 270: 120681 DOI: 10.1016/j.biomaterials.2021.120681
April 12, 2021

Episode 426 - Tackling waste water and antibiotic resistance together

Hydrogen fuel promises a cleaner future, but the methods to make it are often dirty. A new approach recycles and treats waste water with sunlight to efficiently produce hydrogen. A new electrolysis approach turns waste antibiotics into hydrogen fuel cells. Removing antibiotics and other pharmaceuticals from waster water can be tricky, but a new technique turns that into green energy. Aquaculture is growing rapidly, but it is leading to antimicrobial resistance? What contributes more to antimicrobial resistance - fish farms or waste water? Incorrectly managed waster water can lead to superbugs.

 

References:

  1. Yaoyao Wu, Yuqiong Li, Hejing Hu, Guoshen Zeng, Chuanhao Li. Recovering Hydrogen Energy from Photocatalytic Treatment of Pharmaceutical-Contaminated Water Using Co3O4 Modified {001}/{101}-TiO2 NanosheetsACS ES&T Engineering, 2021; 1 (3): 603 DOI: 10.1021/acsestengg.1c00003
  2. Thunchanok Thongsamer, Rattikan Neamchan, Adrian Blackburn, Kishor Acharya, Sawannee Sutheeworapong, Bundit Tirachulee, Pavinee Pattanachan, Soydoa Vinitnantharat, Xin-Yuan Zhou, Jian-Qiang Su, Yong-Guan Zhu, David Graham, David Werner. Environmental antimicrobial resistance is associated with faecal pollution in Central Thailand’s coastal aquaculture regionJournal of Hazardous Materials, 2021; 125718 DOI: 10.1016/j.jhazmat.2021.125718
April 5, 2021

Episode 425 - Tiny creatures with a huge impact on our oceans

Can you find fresh water in the middle of the ocean? What happens when a geyser of fresh water erupts from the sea floor into the ocean? A sudden freshwater spring can radically change the ocean floor. How do plankton shells and coral help us monitor a changing climate? Life in the oceans can help sequester carbon. We can track the way the climate has changed in the past by studying strontium isotopes in seawater. Changing climates can impact life in shallow and deep water, which can lead to changes in the carbon cycle. Tiny creatures like copepods can have a huge impact on our ocean food web. How do tiny creatures like copepods gather in ephemeral ocean zephyrs. Tiny vortexs can act as a gathering place for tiny but important sea creatures.

  1. Eric Attias, Steven Constable, Dallas Sherman, Khaira Ismail, Christopher Shuler, Henrietta Dulai. Marine Electromagnetic Imaging and Volumetric Estimation of Freshwater Plumes Offshore Hawai'i. Geophysical Research Letters, 2021; 48 (7) DOI: 10.1029/2020GL091249
  2. Adina Paytan, Elizabeth M. Griffith, Anton Eisenhauer, Mathis P. Hain, Klaus Wallmann, Andrew Ridgwell. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021; 371 (6536): 1346 DOI: 10.1126/science.aaz9266
  3. Dorsa Elmi, Donald R. Webster, David M. Fields. Response of the copepod Acartia tonsa to the hydrodynamic cues of small-scale, dissipative eddies in turbulence. The Journal of Experimental Biology, 2021; 224 (3): jeb237297 DOI: 10.1242/jeb.237297
March 22, 2021

Episode 423 - Humans vs Bacteria on earth and in space

Space is hard, things are different there which means something simple as salmonella becomes much more challenging. The rules of bacterial infection and response change once you're in space. How does your body respond to bacterial infection in microgravity environments? Getting sick in space may be worse than on earth. The human microbiome is incredible diverse and not well understood. Your gut contains 100,000s of bacteria groups, virus and other things. A large global study of gut microbiome has revealed thousands of new virus and bacteria types.

  1. Jennifer Barrila, Shameema F. Sarker, Nicole Hansmeier, Shanshan Yang, Kristina Buss, Natalia Briones, Jin Park, Richard R. Davis, Rebecca J. Forsyth, C. Mark Ott, Kevin Sato, Cristine Kosnik, Anthony Yang, Cheryl Shimoda, Nicole Rayl, Diana Ly, Aaron Landenberger, Stephanie D. Wilson, Naoko Yamazaki, Jason Steel, Camila Montano, Rolf U. Halden, Tom Cannon, Sarah L. Castro-Wallace, Cheryl A. Nickerson. Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimuriumnpj Microgravity, 2021; 7 (1) DOI: 10.1038/s41526-021-00136-w
  2. Luis F. Camarillo-Guerrero, Alexandre Almeida, Guillermo Rangel-Pineros, Robert D. Finn, Trevor D. Lawley. Massive expansion of human gut bacteriophage diversityCell, 2021; 184 (4): 1098 DOI: 10.1016/j.cell.2021.01.029
March 15, 2021

Episode 422 - Squid blending into starlight with Bio-luminescent bacteria

Squid can change colours, reflect light and blend in with their surroundings. How does the changing colours on squid skin work? What proteins and structures enable squid skin to reflect and amplify varying light? Squid can blend themselves into the starlight with the aid of bio-luminescence. The symbiotic relationship between bacteria and squid starts right after birth, and helps them shine to avoid predators and catch prey. A baby squid may not start out bioluminescent but a rapid spread of the right bacteria turns on the lights.

  1. Katherine E. Zink, Denise A. Ludvik, Phillip R. Lazzara, Terry W. Moore, Mark J. Mandel, Laura M. Sanchez. A Small Molecule Coordinates Symbiotic Behaviors in a Host OrganmBio, 2021; 12 (2) DOI: 10.1128/mBio.03637-20
  2. Daniel E. Morse, Esther Taxon. Reflectin needs its intensity amplifier: Realizing the potential of tunable structural biophotonicsApplied Physics Letters, 2020; 117 (22): 220501 DOI: 10.1063/5.0026546
March 8, 2021

Episode 421 - March Mammal Madness ‘21 and Bats tuning out the world

We find out about the outreach and impact of March Mammal Madness. What happens when 65 animals face off for bragging rights? Find out in #2021MMM . By sharing science with a dramatic flair, #2021MMM has brought attention to 1000s of scientific papers. From 1% of US High school classrooms, to a global audience of young and old, #2021MMM shows how science does not have to be boring. How do bats tune out the background noise and hunt tiny prey? Using acoustic tunnel vision, bats are able to hone in on their tiny prey. By echoing quietly, bats can detect the smallest of bugs.

  1. Hinde, K., Amorim, C. E., Brokaw, A. F., Burt, N., Casillas, M. C., Chen, A., . . . Anderson, C. N. (2021). March mammal madness and the power of narrative in science outreach. ELife, 10. doi:10.7554/elife.65066
  2. Hinde, K. (et al..). March mammal madness: How to play. Retrieved March 06, 2021, from https://libguides.asu.edu/MarchMammalMadness#s-lg-box-23314477
  3. Hinde, K, March mammal Madness 2021. Retrieved March 06, 2021, from http://mammalssuck.blogspot.com/2021/02/march-mammal-madness-2021.html
  4. Laura Stidsholt, Stefan Greif, Holger R. Goerlitz, Kristian Beedholm, Jamie Macaulay, Mark Johnson, Peter Teglberg Madsen. Hunting bats adjust their echolocation to receive weak prey echoes for clutter reduction. Science Advances, 2021; 7 (10): eabf1367 DOI: 10.1126/sciadv.abf1367
March 1, 2021

Episode 420 - Slime with memories, and 3d printed materials to repair damaged neurons

Slime with memories, and 3d printed materials to repair damaged neurons. How can a slime form memories? Where does it store them? What is the largest single cell organism and how does it remember things? How can you store memories in an interconnected series of tubes? How can you use 3D printed self assembling materials to help regrow damaged neurons?

  1. Mirna Kramar, Karen Alim. Encoding memory in tube diameter hierarchy of living flow networkProceedings of the National Academy of Sciences, 2021; 118 (10): e2007815118 DOI: 10.1073/pnas.2007815118
  2. Karen Alim, Natalie Andrew, Anne Pringle, Michael P. Brenner, Mechanism of signal propagation in P. polycephalum, Proceedings of the National Academy of Sciences May 2017, 114 (20) 5136-5141; DOI: 10.1073/pnas.1618114114
  3. Alexandra N. Edelbrock, Tristan D. Clemons, Stacey M. Chin, Joshua J. W. Roan, Eric P. Bruckner, Zaida Álvarez, Jack F. Edelbrock, Kristen S. Wek, Samuel I. Stupp. Superstructured Biomaterials Formed by Exchange Dynamics and Host–Guest Interactions in Supramolecular PolymersAdvanced Science, 2021; 2004042 DOI: 10.1002/advs.202004042
February 22, 2021

Episode 419 - Testing life on Mars here on Earth

Perseverance has landed and begun it's long mission, but how can scientists on Earth help research on Mars? Can we study life on Mars here on Earth? Robotic missions aren't the only way Martian rock has made it's way to Earth. Rare meteorites from Mars can be used to test how life would grow in Martian soil. Just how old is the Jezero crater? Can you date a crater without doing detailed tests? How does measuring lunar craters help us put a date on the age of Martian craters like Jezero?

  1. T. Milojevic, M. Albu, D. Kölbl, G. Kothleitner, R. Bruner, M. Morgan. Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformationCommunications Earth & Environment, 2021 DOI: 10.1038/s43247-021-00105-x
  2. Cassata, W. S., Cohen, B. E., Mark, D. F., Trappitsch, R., Crow, C. A., Wimpenny, J., . . . Smith, C. L. (2018). Chronology of martian breccia nwa 7034 and the formation of the martian crustal dichotomyScience Advances, 4(5). doi:10.1126/sciadv.aap8306
  3. Simone Marchi. A new martian crater chronology: Implications for Jezero craterThe Astronomical Journal, 2021 [abstract]
February 15, 2021

Episode 418 - Venus Fly Taps, Magnets and Sugar in plants

Can plants produce magnetic fields? By studying Venus Fly Traps, scientists can figure out if plants can make their own magnetic fields. Do pulse of plants produce magnetic fields like those we see in animal muscles? Can you give a plant an MRI? The iconic Venus Fly trap can help us understand how to study the health of plants without harming them. Is there a way to measure the metabolism of a plant directly? By studying the sugar inside plant cells, scientists can understand their growth and response to stress.

  1. Anne Fabricant, Geoffrey Z. Iwata, Sönke Scherzer, Lykourgos Bougas, Katharina Rolfs, Anna Jodko-Władzińska, Jens Voigt, Rainer Hedrich, Dmitry Budker. Action potentials induce biomagnetic fields in carnivorous Venus flytrap plantsScientific Reports, 2021; 11 (1) DOI: 10.1038/s41598-021-81114-w
  2. Chiara Diacci, Tayebeh Abedi, Jee Woong Lee, Erik O. Gabrielsson, Magnus Berggren, Daniel T. Simon, Totte Niittylä, Eleni Stavrinidou. Diurnal in vivo xylem sap glucose and sucrose monitoring using implantable organic electrochemical transistor sensorsiScience, 2021; 24 (1): 101966 DOI: 10.1016/j.isci.2020.101966
February 8, 2021

Episode 417 - Umami, vitamins, juice and drinks

What is umami and how can it make our food taste better? You've heard of umami in food, but can you also get it from drinks? Can you get an umami boost from combining certain food and drinks? Chemically what happens inside food and drink to give it an umami boost? Can different juicing techniques lead to healthier drinks? Does blending or squeezing lead to different amounts of vitamins in drinks?

  1. Charlotte Vinther Schmidt, Karsten Olsen, Ole G. Mouritsen. Umami potential of fermented beverages: sake, wine, champagne, and beer. Food Chemistry, 2021; 128971 DOI: 10.1016/j.foodchem.2020.128971
  2. Junyi Wang, Guddadarangavvanahally K. Jayaprakasha, Bhimanagouda S. Patil. Untargeted Chemometrics Evaluation of the Effect of Juicing Technique on Phytochemical Profiles and Antioxidant Activities in Common Vegetables. ACS Food Science & Technology, 2020; DOI: 10.1021/acsfoodscitech.0c00013
February 1, 2021

Episode 416 - Sourdough starters and less allergens in wheat and peanuts

Sourdough baking has rising to become a global hobby, but how diverse are they? Each sourdough starter is a tiny ecosystem, and a global study shows how diverse they are. Scientists analysed 500 sourdough from across the world to find out what makes the best loaf. Baking is about carefully cultivating a microbiome.   What can be done to make wheat and peanuts less dangerous for people with allergies? Can you make wheat and peanuts that are better for allergies?

  1. Elizabeth A Landis, Angela M Oliverio, Erin A McKenney, Lauren M Nichols, Nicole Kfoury, Megan Biango-Daniels, Leonora K Shell, Anne A Madden, Lori Shapiro, Shravya Sakunala, Kinsey Drake, Albert Robbat, Matthew Booker, Robert R Dunn, Noah Fierer, Benjamin E Wolfe. The diversity and function of sourdough starter microbiomeseLife, 2021; 10 DOI: 10.7554/eLife.61644
  2. American Society of Agronomy. (2021, January 27). Making wheat and peanuts less allergenic. ScienceDaily. Retrieved January 30, 2021 from www.sciencedaily.com/releases/2021/01/210127085239.htm
January 11, 2021

Episode 413 - Detecting gene doping in sport, and the strange air of gyms

You've probably heard of CRISPR, but what does it mean for the world of professional sports? How could gene-doping be detected by sports administrators? Could you tell if someone had used CRISPR to 'dope' their performance?  WADA considers gene editing a form of doping, but how can you detect it? What happens when you mix sweat, gym equipment and cleaning products? When you exercise you release a 3-5 times the amount of chemicals than a sedentary person. What happens to the mix of sweat, amino acids and cleaning products in the air of a gym?

  1. Alina Paßreiter, Andreas Thomas, Nicolas Grogna, Philippe Delahaut, Mario Thevis. First Steps toward Uncovering Gene Doping with CRISPR/Cas by Identifying SpCas9 in Plasma via HPLC–HRMS/MSAnalytical Chemistry, 2020; 92 (24): 16322 DOI: 10.1021/acs.analchem.0c04445
  2. Zachary Finewax, Demetrios Pagonis, Megan S. Claflin, Anne V. Handschy, Wyatt L. Brown, Olivia Jenks, Benjamin A. Nault, Douglas A. Day, Brian M. Lerner, Jose L. Jimenez, Paul J. Ziemann, Joost A. Gouw. Quantification and source characterization of volatile organic compounds from exercising and application of chlorine‐based cleaning products in a university athletic centerIndoor Air, 2020; DOI: 10.1111/ina.12781
January 4, 2021

Episode 412 - Magnetic Glues and Chemical gears

Waiting for glue to cure can take a long time, but can magnets speed it up? We use epoxy to glue together so much of the modern world, but it takes a lot of energy to cure it. Is there a way to make epoxy glues more 'energy efficient' with magnets? Magnetically activate glues can literally stick your shoes together. Gears are one of the most fundamental mechanical elements, can we get chemicals to form gears themselves. A 1mm thick sheet with some chemicals and you can get gears to form themselves. Small gear trains and mechanical motion can power soft and flexible machines.

References:

  1. Richa Chaudhary, Varun Chaudhary, Raju V. Ramanujan, Terry W.J. Steele. Magnetocuring of temperature failsafe epoxy adhesivesApplied Materials Today, 2020; 21: 100824 DOI: 10.1016/j.apmt.2020.100824
  2. Abhrajit Laskar, Oleg E. Shklyaev, Anna C. Balazs. Self-Morphing, Chemically Driven Gears and MachinesMatter, 2020 DOI: 10.1016/j.matt.2020.11.014
December 28, 2020

Episode 411 - Lightning fast eyes and looking for hidden spots

How do our eyes process the continually barrage of photos so efficiently? What happens in our eyes that enables us to respond so quickly to stimulus like light or signs of danger? Why do zebra-fish swim towards the light so quickly? How does your brain process and map a room? Does the way your brain processes a space change when you're searching for something rather than exploring?

References:

  1. Matthias Stangl, Uros Topalovic, Cory S. Inman, Sonja Hiller, Diane Villaroman, Zahra M. Aghajan, Leonardo Christov-Moore, Nicholas R. Hasulak, Vikram R. Rao, Casey H. Halpern, Dawn Eliashiv, Itzhak Fried, Nanthia Suthana. Boundary-anchored neural mechanisms of location-encoding for self and others. Nature, 2020; DOI: 10.1038/s41586-020-03073-y
  2. Yvonne Kölsch, Joshua Hahn, Anna Sappington, Manuel Stemmer, António M. Fernandes, Thomas O. Helmbrecht, Shriya Lele, Salwan Butrus, Eva Laurell, Irene Arnold-Ammer, Karthik Shekhar, Joshua R. Sanes, Herwig Baier. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron, 2020; DOI: 10.1016/j.neuron.2020.12.003
December 7, 2020

Episode 408 - Life in deep sea soil, and blending in amongst leaves

Life underneath the sea floor at the deepest parts of the ocean. How can life survive in deep sea with no light and at incredible temperatures? Have you ever thought about life beneath the beneath the sea? How can life survive in soil hotter than boiling water? If a tree feels out of place, it's microbes on leaves tend to blend in with the crowd. What happens to the microbes on the iconic maple leaves as the trees go further north? Feel like a fish out of water, or a maple amongst conifers? Maybe its time to blend in. How can we use plant based compounds to help keep plants safe from bacterial infection?

  1. Verena B. Heuer, Fumio Inagaki, Yuki Morono, Yusuke Kubo, Arthur J. Spivack, Bernhard Viehweger, Tina Treude, Felix Beulig, Florence Schubotz, Satoshi Tonai, Stephen A. Bowden, Margaret Cramm, Susann Henkel, Takehiro Hirose, Kira Homola, Tatsuhiko Hoshino, Akira Ijiri, Hiroyuki Imachi, Nana Kamiya, Masanori Kaneko, Lorenzo Lagostina, Hayley Manners, Harry-Luke McClelland, Kyle Metcalfe, Natsumi Okutsu, Donald Pan, Maija J. Raudsepp, Justine Sauvage, Man?Yin Tsang, David T. Wang, Emily Whitaker, Yuzuru Yamamoto, Kiho Yang, Lena Maeda, Rishi R. Adhikari, Clemens Glombitza, Yohei Hamada, Jens Kallmeyer, Jenny Wendt, Lars Wörmer, Yasuhiro Yamada, Masataka Kinoshita, Kai Uwe Hinrichs. Temperature limits to deep subseafloor life in the Nankai Trough subduction zoneScience, 2020 DOI: 10.1126/science.abd7934
  2. Geneviève Lajoie, Steven W. Kembel. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal gradientEcological Monographs, 2020; DOI: 10.1002/ecm.1443
  3. Hong-Wu Liu, Qing-Tian Ji, Gang-Gang Ren, Fang Wang, Fen Su, Pei-Yi Wang, Xiang Zhou, Zhi-Bing Wu, Zhong Li, Song Yang. Antibacterial Functions and Proposed Modes of Action of Novel 1,2,3,4-Tetrahydro-β-carboline Derivatives that Possess an Attractive 1,3-Diaminopropan-2-ol Pattern against Rice Bacterial Blight, Kiwifruit Bacterial Canker, and Citrus Bacterial CankerJournal of Agricultural and Food Chemistry, 2020; 68 (45): 12558 DOI: 10.1021/acs.jafc.0c02528
November 30, 2020

Episode 407 - Random generating DNA and random mouse movements

Random numbers are incredibly important for our digital economy, so how do we generate them? What is the best way to make a random number: roll a dice, lava lamp, guess, DNA? What connects lava lamps, e-commerce and synthetic DNA? How can we better generate random numbers using synthesized DNA. How do your mouse movements reveal about your decision making process. Do mouse movements help us identify risk takers or keen deliberators. Whether you know it or not, your mouse moving may be part of your decision making process.

  1. Linda C. Meiser, Julian Koch, Philipp L. Antkowiak, Wendelin J. Stark, Reinhard Heckel, Robert N. Grass. DNA synthesis for true random number generationNature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-19757-y
  2. Paul E. Stillman, Ian Krajbich, and Melissa J. Ferguson. Using dynamic monitoring of choices to predict and understand risk preferencesPNAS, 2020 DOI: 10.1073/pnas.2010056117
November 16, 2020

Episode 405 - Studying Supernova, pollution and air quality with trees

Studying supernova and air quality with the help of trees. Supernova are some of the most devastating events in the universe, but what is their connection to trees? By studying tree rings we can help piece together the final days of stars. Supernova can cause large spikes in radiation that can be detected in tree rings. Trees do a lot for us but they can also help us track air quality simply and cheaply. Magnets and pine needles can helps us understand air quality. Air quality monitoring can be a matter of running a magnet over some leaves.

References:

  1. G. Robert Brakenridge. Solar system exposure to supernova γ radiationInternational Journal of Astrobiology, 2020; 1 DOI: 10.1017/S1473550420000348
  2. Grant Rea‐Downing, Brendon J. Quirk, Courtney L. Wagner, Peter C. Lippert. Evergreen needle magnetization as a proxy for particulate matter pollution in urban environmentsGeoHealth, 2020; DOI: 10.1029/2020GH000286
November 9, 2020

Episode 404 - Ants , Acid, and Yeast that grow acid

Ants, acid and yeast that can grow their own acid. Ants use formic acid to keep their colony safe inside and out. By ingesting formic acid, Ants are able to ward off dangerous pathogens. Passing food with your mouth isn't very socially distant, but ants eat acid to make it safe. How can yeast be used to 'grow' materials needed to make perfume and dyes? Succinic acid is a useful chemical precursor, but its possible to grow yeast that are able yo produce on scale as a by product. Finding just the right genes with CRISPR and super computers can turn yeast into a chemical production powerhouse.

  1. Simon Tragust, Claudia Herrmann, Jane Häfner, Ronja Braasch, Christina Tilgen, Maria Hoock, Margarita Artemis Milidakis, Roy Gross, Heike Feldhaar. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife, 2020; 9 DOI: 10.7554/eLife.60287
  2. Patrick F. Suthers, Hoang V. Dinh, Zia Fatma, Yihui Shen, Siu Hung Joshua Chan, Joshua D. Rabinowitz, Huimin Zhao, Costas D. Maranas. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020; 11: e00148 DOI: 10.1016/j.mec.2020.e00148
November 2, 2020

Episode 403 - Taking pollutants out of our water, factories and environment

How can we take pollutants easily out of our water, factories and environment? PFAS contamination is difficult to clear up, but a new method could attract, trap and destroy it with electrodes. PFAS can be found in many things, but taking it out of an area has often been very difficult. Using a tunenable electrode, in 3 hours you could extract and destroy PFAS in contaminated water. A combined clay and glass filter could neatly trap and extract CO2 from a gassy mixture. industrial processes often produce CO2 amongst other gases, but how can you quickly only separate out that CO2, reuse it and prevent it from being emitted? Lead in drinking water is a serious issue,but understanding the amount of exposure is difficult. A new method for analysing lead in drinking water tips acid onto 'filled' filters.

  1. Kwiyong Kim, Paola Baldaguez Medina, Johannes Elbert, Emmanuel Kayiwa, Roland D. Cusick, Yujie Men, Xiao Su. Molecular Tuning of Redox‐Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020; 2004635 DOI: 10.1002/adfm.202004635
  2. Basic Information on PFAS. (2018, December 06). Retrieved October 31, 2020, from https://www.epa.gov/pfas/basic-information-pfas
  3. Martin Rieß, Renée Siegel, Jürgen Senker, Josef Breu. Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020; 100210 DOI: 10.1016/j.xcrp.2020.100210
  4. Weiyi Pan, Elizabeth R. Johnson, Daniel E. Giammar. Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. Environmental Science: Water Research & Technology, 2020; 6 (10): 2734 DOI: 10.1039/d0ew00496k