Loading Downloads
437Episodes
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

May 31, 2021

Episode 433 - Prioritizing memories and filtering noise

How does your brain decide what's important to remember? You're constantly bombarded with info so how does your brain filter it all? Do memories change over time? Do certain details stand out more in our memories over time? What details can get lost in our memories over time? How does you brain know if it's worth 'saving' that picture you've seen. How does your brain filter out and only store the important stuff.

  1. Julia Lifanov, Juan Linde-Domingo, Maria Wimber. Feature-specific reaction times reveal a semanticisation of memories over time and with repeated rememberingNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-23288-5
  2. Vahid Mehrpour, Travis Meyer, Eero P. Simoncelli, Nicole C. Rust. Pinpointing the neural signatures of single-exposure visual recognition memoryProceedings of the National Academy of Sciences, 2021; 118 (18): e2021660118 DOI: 10.1073/pnas.2021660118
May 24, 2021

Episode 432 - Using sound and magnetism to navigate the world

How do animals use different senses to navigate the world? Can sharks detect magnetic fields? How do sharks travel 20,000km so precisely?  Can sharks use the Earth's magnetic field to navigate? What creatures use magnetism and how do they do it? Bats use echolocation, but what if the speed of sound changes? What if everything moved at 1.25 x speed? How can bats adapt to changes in the speed of sound?

  1. Bryan A. Keller, Nathan F. Putman, R. Dean Grubbs, David S. Portnoy, Timothy P. Murphy. Map-like use of Earth’s magnetic field in sharksCurrent Biology, 2021; DOI: 10.1016/j.cub.2021.03.103
  2. Eran Amichai, Yossi Yovel. Echolocating bats rely on an innate speed-of-sound referenceProceedings of the National Academy of Sciences, 2021; 118 (19): e2024352118 DOI: 10.1073/pnas.2024352118
May 17, 2021

Episode 431 - Super stellar collisions and super computers

Space is really big, but when a collision happens it's incredibly complicated. Studying and predicting collisions between stars is hard even for super computers. How can you speed up the modelling of stellar collisions? A neutron star and a black hole colliding may not be as rare as you think. The collision of two heavyweights could give us the data we need to crack a century old question. The merger of a black hole and a neutron star gives off tremendous amounts of energy and may be more common than we thought. By 2030 we should have enough data captured on LIGO and other instruments to solve Hubble's dilema.

  1. Dominic C Marcello, Sagiv Shiber, Orsola De Marco, Juhan Frank, Geoffrey C Clayton, Patrick M Motl, Patrick Diehl, Hartmut Kaiser. Octo-Tiger: a new, 3D hydrodynamic code for stellar mergers that uses HPX parallelisationMonthly Notices of the Royal Astronomical Society, 2021; DOI: 10.1093/mnras/stab937
  2. Stephen M. Feeney, Hiranya V. Peiris, Samaya M. Nissanke, and Daniel J. Mortlock. Prospects for measuring the Hubble constant with neutron-star–black-hole mergersPhys. Rev. Lett. (accepted), 2021 [abstract]
May 10, 2021

Episode 430 - Using Corn to clean water, and new wind turbine designs

Clever engineering can turn waste products into planet cleaning tools. Corn is America's biggest crop, but it's incredibly wasteful. Corn waste can be given a second life as activated carbon to help clean water. Corn waste makes for an efficient water when it's turned into activated charcoal. Wind turbines have to be carefully placed and located to maximise their efficiency. When designing a wind farm, the location and style of the turbine can greatly impact generation. Which design is better for wind turbines; vertical or horizontal? Vertical wind turbines aren't as common, but they can work together to boost efficiency.

  1. Mark Gale, Tu Nguyen, Marissa Moreno, Kandis Leslie Gilliard-AbdulAziz. Physiochemical Properties of Biochar and Activated Carbon from Biomass Residue: Influence of Process Conditions to Adsorbent PropertiesACS Omega, 2021; 6 (15): 10224 DOI: 10.1021/acsomega.1c00530
  2. Joachim Toftegaard Hansen, Mahak Mahak, Iakovos Tzanakis. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approachRenewable Energy, 2021; 171: 1371 DOI: 10.1016/j.renene.2021.03.001
May 3, 2021

Episode 429 - Volcanic ash in our oceans and rafting in the air

Volcanic eruptions are incredibly powerful but not well understood. When a volcano erupts it can spread ash far and wide both in the ocean and in the air. What happens when a volcano erupts underwater? How much energy does an underwater volcano unleash? Where does all the energy in an underwater volcanic eruption go? Is it possible for volcanic ash to form and spread underwater? Just like jetstream currents in the air, volcanic ash can be carried far and wide in underwater eruptions. Volcanic ash can get held up by smaller particles, to raft long distances.

  1. T. Dürig, J. D. L. White, A. P. Murch, B. Zimanowski, R. Büttner, D. Mele, P. Dellino, R. J. Carey, L. S. Schmidt & N. Spitznagel. Deep-sea eruptions boosted by induced fuel-coolant explosions. Nature Geoscience, June 2020 DOI: 10.1038/s41561-020-0603-4
  2. Samuel S. Pegler, David J. Ferguson. Rapid heat discharge during deep-sea eruptions generates megaplumes and disperses tephra. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22439-y
  3. Eduardo Rossi, Gholamhossein Bagheri, Frances Beckett, Costanza Bonadonna. The fate of volcanic ash: premature or delayed sedimentation? Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-21568-8