Loading Downloads
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

November 1, 2021

Episode 455 - Growing rocket fuel on Mars and greener jet fuel on earth

Growing rocket fuel on the surface of Mars, and greener jet fuel here on earth. The problem with space travel is you have to take everything with you. Including fuel. Is there a way to grow your own fuel to make the load lighter on a rocket? A round trip to Mars needs billions of dollars of fuel. Is there a way we can reduce cost and energy by producing rocket fuel on the surface of Mars? How can you grow rocket fuel on mars using microbes? Would the same rocket fuel you use on Earth make sense to use on Mars? How can we clean up the aviation industry's carbon emissions? Are there alternative jet fuels that don't come at the expense of growing food? Bio-fuels are often produced at the expense of food, but are there alternatives that are win win? 

  1. Nicholas S. Kruyer, Matthew J. Realff, Wenting Sun, Caroline L. Genzale, Pamela Peralta-Yahya. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategyNature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-26393-7
  2. Asiful Alam, Md Farhad Hossain Masum, Puneet Dwivedi. Break-even price and carbon emissions of carinata-based sustainable aviation fuel production in the Southeastern United StatesGCB Bioenergy, 2021 DOI: 10.1111/.1gcbb2888
October 4, 2021

Episode 451 - Microbes and Metals as allies and enemies

Microbes and metals as enemies and allies. Metals can have superb antimicrobial properties but they're not ideal for making sheets...unless. Using a melt in your hand melt, and some copper you can make antimicrobial sheets and masks. Metals are great at fighting microbes but are challenging to make comfortable to wear. Is it possible to get a bio drive fuel cell? Bacteria can be used to clean up waste, but can they also make electricity at the same time? Cleaning up pollution and producing renewable electricity, what's not to love about the bacteria Shenwanella. With metallic tinged skin, bacteria can be boosted into a garbage eating electricity producing machine.

  1. Ki Yoon Kwon, Samuel Cheeseman, Alba Frias‐De‐Diego, Haeleen Hong, Jiayi Yang, Woojin Jung, Hong Yin, Billy J. Murdoch, Frank Scholle, Nathan Crook, Elisa Crisci, Michael D. Dickey, Vi Khanh Truong, Tae‐il Kim. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral FabricsAdvanced Materials, 2021; 2104298 DOI: 10.1002/adma.202104298
  2. Bocheng Cao, Zipeng Zhao, Lele Peng, Hui-Ying Shiu, Mengning Ding, Frank Song, Xun Guan, Calvin K. Lee, Jin Huang, Dan Zhu, Xiaoyang Fu, Gerard C. L. Wong, Chong Liu, Kenneth Nealson, Paul S. Weiss, Xiangfeng Duan, Yu Huang. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cellsScience, 2021; 373 (6561): 1336 DOI: 10.1126/science.abf3427
August 23, 2021

Episode 445 - De-carbonizing Transportation and Fertilizer

Can you really power a plane with enough batteries to fly across the world? How many batteries does a ship need to circumnavigate the globe? Is there an efficient way to stop relying on diesel and dirty jet fuel? How can we turn big CO2 emitters like ships and planes into CO2 negative systems? Can aviation and transport ever be carbon neutral? How can we make fertilizer without using so much energy? The Haber Bosch process helped feed the planet, but how can we replace it to save the planet?



  1. Travis A. Schmauss, Scott A. Barnett. Viability of Vehicles Utilizing On-Board CO2 Capture. ACS Energy Letters, 2021; 3180 DOI: 10.1021/acsenergylett.1c01426
  2. Chade Lv, Lixiang Zhong, Hengjie Liu, Zhiwei Fang, Chunshuang Yan, Mengxin Chen, Yi Kong, Carmen Lee, Daobin Liu, Shuzhou Li, Jiawei Liu, Li Song, Gang Chen, Qingyu Yan, Guihua Yu. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Sustainability, 2021; DOI: 10.1038/s41893-021-00741-3
August 2, 2021

Episode 442 - Just what is a metal anyway

Just what is a metal anyway? It can be hard to classify things, no matter what you do there's always exceptions to the rules. Chemists, Physicists and Astrophysicists have wildly differing opinions on what a metal is. Although there is disagreement about what makes a metal, can you find new exceptions? What needs to happen to turn water into a metal? Can pure water be made to conduct electricity without needing a Jupiter sized planet? How do you turn water into a golden, shimmering, conducting metal? 

  1. Philip E. Mason, H. Christian Schewe, Tillmann Buttersack, Vojtech Kostal, Marco Vitek, Ryan S. McMullen, Hebatallah Ali, Florian Trinter, Chin Lee, Daniel M. Neumark, Stephan Thürmer, Robert Seidel, Bernd Winter, Stephen E. Bradforth, Pavel Jungwirth. Spectroscopic evidence for a gold-coloured metallic water solution. Nature, 2021; 595 (7869): 673 DOI: 10.1038/s41586-021-03646-5
July 26, 2021

Episode 441 - Augmenting the human body to keep it safe

Using technology and tools to make the human body safer. How can we use exoskeletons to keep people safe? Does using a tool like an exoskeleton automatically make a task easier? How can technology that augments bodys hinder when trying to help? How can we keep our head safer during a collision. Countless people rely on bicycles for safe and green transport, but how do we make it safer? Bicycle helmets are a simple tool for helping save lives, but can they be made even safer with new materials? 

  1. Yibo Zhu, Eric B. Weston, Ranjana K. Mehta, William S. Marras. Neural and biomechanical tradeoffs associated with human-exoskeleton interactions. Applied Ergonomics, 2021; 96: 103494 DOI: 10.1016/j.apergo.2021.103494
  2. Karl A Zimmerman, Etienne Laverse, Ravjeet Samra, Maria Yanez Lopez, Amy E Jolly, Niall J Bourke, Neil S N Graham, Maneesh C Patel, John Hardy, Simon Kemp, Huw R Morris, David J Sharp. White matter abnormalities in active elite adult rugby players. Brain Communications, 2021; 3 (3) DOI: 10.1093/braincomms/fcab133
July 19, 2021

Episode 440 - Turning off plants with a switch of a light

Turning off plants with a switch of a light. How can optogenetics be used to turn off photosynthesis. Stomata cells help a plant from feasting too much in times of famine. Stomata cells regulate how much photosynthesis plants undertake, but can they be regulated with light? How can Yeast be used to help plants fight back against fungus. Fungal infections can devastate crops and plants, but can we avoid dangerous fungicides? How can we protect plants from, fungi without damaging the environment? Can yeast grown proteins help stop fungal infections without killing all fungi?

  1. Tiffany Chiu, Anita Behari, Justin W. Chartron, Alexander Putman, Yanran Li. Exploring the potential of engineering polygalacturonase‐inhibiting protein as an ecological, friendly, and nontoxic pest control agent. Biotechnology and Bioengineering, 2021; DOI: 10.1002/bit.27845
  2. Shouguang Huang, Meiqi Ding, M. Rob G. Roelfsema, Ingo Dreyer, Sönke Scherzer, Khaled A. S. Al-Rasheid, Shiqiang Gao, Georg Nagel, Rainer Hedrich, Kai R. Konrad. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1Science Advances, 2021; 7 (28): eabg4619 DOI: 10.1126/sciadv.abg4619
June 21, 2021

Episode 436 - Squeezing and grinding to create next generation materials from humble begingings

Squeezing and grinding to create next generation materials from humble beginnings. Changing magnetic field by changing shape could open the door for more efficient computers. Magnetostriction causes that 'hum' you hear from electronics but it can be harnessed for good. Large electrical devices like transformers or fluorescent tubes shape influences their magnetic field. The next generation of computers may harness the way magnetic fields and physical shape can be linked. Forget rare earth metals, there is a more efficient way to make high powered computer chips out of humble iron and gallium. Luminescent polymers can be found in fancy OLED screens but are complex to produce. How can you make fancy luminescent polymers from generic polymers? By grinding them. A unique way of grinding and rolling basic generic polymers could create powerful luminescent polymers for use in high end screens, lasers and bio-imaging.

  1. P. B. Meisenheimer, R. A. Steinhardt, S. H. Sung, L. D. Williams, S. Zhuang, M. E. Nowakowski, S. Novakov, M. M. Torunbalci, B. Prasad, C. J. Zollner, Z. Wang, N. M. Dawley, J. Schubert, A. H. Hunter, S. Manipatruni, D. E. Nikonov, I. A. Young, L. Q. Chen, J. Bokor, S. A. Bhave, R. Ramesh, J.-M. Hu, E. Kioupakis, R. Hovden, D. G. Schlom, J. T. Heron. Engineering new limits to magnetostriction through metastability in iron-gallium alloys. Nature Communications, 2021; 12 (1) DOI: 10.1038/s41467-021-22793-x
  2. Koji Kubota, Naoki Toyoshima, Daiyo Miura, Julong Jiang, Satoshi Maeda, Mingoo Jin, Hajime Ito. Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent. Angewandte Chemie International Edition, 2021; DOI: 10.1002/anie.202105381
May 10, 2021

Episode 430 - Using Corn to clean water, and new wind turbine designs

Clever engineering can turn waste products into planet cleaning tools. Corn is America's biggest crop, but it's incredibly wasteful. Corn waste can be given a second life as activated carbon to help clean water. Corn waste makes for an efficient water when it's turned into activated charcoal. Wind turbines have to be carefully placed and located to maximise their efficiency. When designing a wind farm, the location and style of the turbine can greatly impact generation. Which design is better for wind turbines; vertical or horizontal? Vertical wind turbines aren't as common, but they can work together to boost efficiency.

  1. Mark Gale, Tu Nguyen, Marissa Moreno, Kandis Leslie Gilliard-AbdulAziz. Physiochemical Properties of Biochar and Activated Carbon from Biomass Residue: Influence of Process Conditions to Adsorbent PropertiesACS Omega, 2021; 6 (15): 10224 DOI: 10.1021/acsomega.1c00530
  2. Joachim Toftegaard Hansen, Mahak Mahak, Iakovos Tzanakis. Numerical modelling and optimization of vertical axis wind turbine pairs: A scale up approachRenewable Energy, 2021; 171: 1371 DOI: 10.1016/j.renene.2021.03.001
March 15, 2021

Episode 422 - Squid blending into starlight with Bio-luminescent bacteria

Squid can change colours, reflect light and blend in with their surroundings. How does the changing colours on squid skin work? What proteins and structures enable squid skin to reflect and amplify varying light? Squid can blend themselves into the starlight with the aid of bio-luminescence. The symbiotic relationship between bacteria and squid starts right after birth, and helps them shine to avoid predators and catch prey. A baby squid may not start out bioluminescent but a rapid spread of the right bacteria turns on the lights.

  1. Katherine E. Zink, Denise A. Ludvik, Phillip R. Lazzara, Terry W. Moore, Mark J. Mandel, Laura M. Sanchez. A Small Molecule Coordinates Symbiotic Behaviors in a Host OrganmBio, 2021; 12 (2) DOI: 10.1128/mBio.03637-20
  2. Daniel E. Morse, Esther Taxon. Reflectin needs its intensity amplifier: Realizing the potential of tunable structural biophotonicsApplied Physics Letters, 2020; 117 (22): 220501 DOI: 10.1063/5.0026546
January 25, 2021

Episode 415 - Greener ways to make Hydrogen and Ammonia

You've probably heard about the wonders of a Hydrogen economy, but how can we make it better for the environment. Synthesizing Ammonia helped feed the planet, but at a huge environmental cost. How can we produce Ammonia without harming the environment? Production of ammonia (and fertilizer) has a huge carbon footprint. How can we clean it up? Hydrogen fuel cells could help decarbonize our economy, but how do we produce it cleanly? Electrolysis can separate hydrogen from water, but how can we do it more efficiently? 

January 4, 2021

Episode 412 - Magnetic Glues and Chemical gears

Waiting for glue to cure can take a long time, but can magnets speed it up? We use epoxy to glue together so much of the modern world, but it takes a lot of energy to cure it. Is there a way to make epoxy glues more 'energy efficient' with magnets? Magnetically activate glues can literally stick your shoes together. Gears are one of the most fundamental mechanical elements, can we get chemicals to form gears themselves. A 1mm thick sheet with some chemicals and you can get gears to form themselves. Small gear trains and mechanical motion can power soft and flexible machines.


  1. Richa Chaudhary, Varun Chaudhary, Raju V. Ramanujan, Terry W.J. Steele. Magnetocuring of temperature failsafe epoxy adhesivesApplied Materials Today, 2020; 21: 100824 DOI: 10.1016/j.apmt.2020.100824
  2. Abhrajit Laskar, Oleg E. Shklyaev, Anna C. Balazs. Self-Morphing, Chemically Driven Gears and MachinesMatter, 2020 DOI: 10.1016/j.matt.2020.11.014
November 9, 2020

Episode 404 - Ants , Acid, and Yeast that grow acid

Ants, acid and yeast that can grow their own acid. Ants use formic acid to keep their colony safe inside and out. By ingesting formic acid, Ants are able to ward off dangerous pathogens. Passing food with your mouth isn't very socially distant, but ants eat acid to make it safe. How can yeast be used to 'grow' materials needed to make perfume and dyes? Succinic acid is a useful chemical precursor, but its possible to grow yeast that are able yo produce on scale as a by product. Finding just the right genes with CRISPR and super computers can turn yeast into a chemical production powerhouse.

  1. Simon Tragust, Claudia Herrmann, Jane Häfner, Ronja Braasch, Christina Tilgen, Maria Hoock, Margarita Artemis Milidakis, Roy Gross, Heike Feldhaar. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife, 2020; 9 DOI: 10.7554/eLife.60287
  2. Patrick F. Suthers, Hoang V. Dinh, Zia Fatma, Yihui Shen, Siu Hung Joshua Chan, Joshua D. Rabinowitz, Huimin Zhao, Costas D. Maranas. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020; 11: e00148 DOI: 10.1016/j.mec.2020.e00148
November 2, 2020

Episode 403 - Taking pollutants out of our water, factories and environment

How can we take pollutants easily out of our water, factories and environment? PFAS contamination is difficult to clear up, but a new method could attract, trap and destroy it with electrodes. PFAS can be found in many things, but taking it out of an area has often been very difficult. Using a tunenable electrode, in 3 hours you could extract and destroy PFAS in contaminated water. A combined clay and glass filter could neatly trap and extract CO2 from a gassy mixture. industrial processes often produce CO2 amongst other gases, but how can you quickly only separate out that CO2, reuse it and prevent it from being emitted? Lead in drinking water is a serious issue,but understanding the amount of exposure is difficult. A new method for analysing lead in drinking water tips acid onto 'filled' filters.

  1. Kwiyong Kim, Paola Baldaguez Medina, Johannes Elbert, Emmanuel Kayiwa, Roland D. Cusick, Yujie Men, Xiao Su. Molecular Tuning of Redox‐Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020; 2004635 DOI: 10.1002/adfm.202004635
  2. Basic Information on PFAS. (2018, December 06). Retrieved October 31, 2020, from https://www.epa.gov/pfas/basic-information-pfas
  3. Martin Rieß, Renée Siegel, Jürgen Senker, Josef Breu. Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020; 100210 DOI: 10.1016/j.xcrp.2020.100210
  4. Weiyi Pan, Elizabeth R. Johnson, Daniel E. Giammar. Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. Environmental Science: Water Research & Technology, 2020; 6 (10): 2734 DOI: 10.1039/d0ew00496k
October 5, 2020

Episode 399 - Avoiding Fatbergs and Breaking down Plastic

Breaking up fatbergs, and breaking down plastic with smarter materials. Sewers are a dangerous place, with fat bergs and sulphuric acid, but can they be cleaned up? Portland Cement has helped build the modern world, but does it also cause problems in our sewers? how can we stop our sewers from corroding with better materials? Breaking down plastic takes a long time, but through in a super team of enzymes and it could be done in days. A super team of enzymes helps break down plastic and could lead to a circular economy.

  1. Brandon C. Knott, Erika Erickson, Mark D. Allen, Japheth E. Gado, Rosie Graham, Fiona L. Kearns, Isabel Pardo, Ece Topuzlu, Jared J. Anderson, Harry P. Austin, Graham Dominick, Christopher W. Johnson, Nicholas A. Rorrer, Caralyn J. Szostkiewicz, Valérie Copié, Christina M. Payne, H. Lee Woodcock, Bryon S. Donohoe, Gregg T. Beckham, John E. McGeehan. Characterization and engineering of a two-enzyme system for plastics depolymerizationProceedings of the National Academy of Sciences, 2020; 202006753 DOI: 10.1073/pnas.2006753117
  2. Rajeev Roychand, Jie Li, Saman De Silva, Mohammad Saberian, David Law, Biplob Kumar Pramanik. Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergsResources, Conservation and Recycling, 2021; 164: 105166 DOI: 10.1016/j.resconrec.2020.105166
September 21, 2020

Episode 397 - Ignobel Prize ‘20 - Physics

We celebrate the Ignobel Prizes once again, and this year we take a deep dive into the Physics prize for 2020. Faraday waves (standing waves in liquids or liquid filled objects) look pretty, but can anything filled with like have one? What about a worm? Can you make Faraday waves and resonant frequencies in Worms? What happens when a laser, a worm, and a speaker go into a lab? The result is an Ignobel Prize.

  1. Maksymov, I.S., Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci Rep 10, 8564 (2020). https://doi.org/10.1038/s41598-020-65295-4
  2. 2020 Ceremony. (2020, September 18). Retrieved September 18, 2020, from https://www.improbable.com/ig-about/the-30th-first-annual-ig-nobel-prize-ceremony/
September 14, 2020

Episode 396 - Is that food safe to eat

Is that food safe to eat? How can you tell if food has gone bad beyond just reading a date? Ever been confused by best before or use by? A new type of label could make it a mater of colors. Color based labels could help detect if your food has gone bad or is contaminated by bacteria. How can we study the microbes that live inside our intestines? The gut microbiome is incredibly fascinating but difficult to study without damaging it. A tiny pill that takes snapshots of micro organisms inside your stomach as it passes through.

  1. Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply ChainAdvanced Functional Materials, 2020 DOI: 10.1002/adfm.202005370
  2. Lu Chen, Lina Gruzinskyte, Steffen Lynge Jørgensen, Anja Boisen, Sarvesh Kumar Srivastava. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and BiomarkersACS Nano, 2020; DOI: 10.1021/acsnano.0c05426
August 3, 2020

Episode 390 - Cool fabrics, melting ice and recycling e-waste

From cool fabrics, to melting ice and recycling e-waste. How can a fabric let air through, but keep water out? Clothing that is breathable, water resistant and thermally efficient hits the sweet spot of a super fabric. Making clothes more efficient at cooling but also self cleaning can reduce our reliance on air conditioning. Using electricity and some polymers we can spin up some new cool clothing fabrics. Melting ice in your frozen over freezer can be made easier with biphillic materials. Materials that both hate and love water at the same time, can help melt ice and make heater exchangers more efficient. Recycling e-waste can be tricky, but what if we could use the by-products to  make new, stronger coatings for steel? Turning e-waste into a steel boosting coating.

  1. Rumana Hossain, Veena Sahajwalla. Material Microsurgery: Selective Synthesis of Materials via High-Temperature Chemistry for Microrecycling of Electronic Waste. ACS Omega, 2020; 5 (28): 17062 DOI: 10.1021/acsomega.0c00485
  2. Xi Yu, Yang Li, Xianfeng Wang, Yang Si, Jianyong Yu, Bin Ding. Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS Applied Materials & Interfaces, 2020; 12 (28): 32078 DOI: 10.1021/acsami.0c04486
  3. Yashraj Gurumukhi, Shreyas Chavan, Soumyadip Sett, Kalyan Boyina, Srivasupradha Ramesh, Peter Sokalski, Kirk Fortelka, Maury Lira, Deokgeun Park, Juo-Yun Chen, Shreyas Hegde, Nenad Miljkovic. Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020; DOI: 10.1016/j.matt.2020.06.029
July 20, 2020

Episode 388 - Cleaning, drinking and shaping water

Making water safe to drink, from evaporation to treatment. How do you simply evaporate water to make it safe? A piece of aluminium and a laser can hold the key to providing cheap and safe drinking water to the world. Pharmaceutical waste can build up in waster water, so how can it be treated? How can two little electrodes deal with the problem of pharmaceutical waste in water? Changing the course of a river can have huge consequences. What can we learn by studying the changes caused by the Panama Canal?

  1. Subhash C. Singh, Mohamed ElKabbash, Zilong Li, Xiaohan Li, Bhabesh Regmi, Matthew Madsen, Sohail A. Jalil, Zhibing Zhan, Jihua Zhang, Chunlei Guo. Solar-trackable super-wicking black metal panel for photothermal water sanitationNature Sustainability, 2020; DOI: 10.1038/s41893-020-0566-x
  2. Yassine Ouarda, Clément Trellu, Geoffroy Lesage, Matthieu Rivallin, Patrick Drogui, Marc Cretin. Electro-oxidation of secondary effluents from various wastewater plants for the removal of acetaminophen and dissolved organic matterScience of The Total Environment, 2020; 738: 140352 DOI: 10.1016/j.scitotenv.2020.140352
  3. Jorge Salgado, María I. Vélez, Catalina González-Arango, Neil L. Rose, Handong Yang, Carme Huguet, Juan S. Camacho, Aaron O'Dea. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basinScience of The Total Environment, 2020; 729: 138444 DOI: 10.1016/j.scitotenv.2020.138444
June 29, 2020

Episode 385 - Understanding what makes water stick together

What seems simple but it's deceptively complex. What makes water molecules stick together, or ice to float on top? Water has many mysteries, like ice floating on liquid. The key lies in the energy distribution. Shooting super high frequency lasers at water can help figure out what makes ice float or water stick together. Cheap and efficient ways to clean water is essential for saving lives across the globe. How can cyrstaline sponges help soak up bad chemicals like hexavalent chromium.

  1. Martina Havenith-Newen, Raffael Schwan, Chen Qu, Devendra Mani, Nitish Pal, Gerhard Schwaab, Joel M. Bowman, Gregory Tschumper. Observation of the low frequency spectrum of water trimer as a sensitive test of the water trimer potential and the dipole moment surface. Angewandte Chemie International Edition, 2020; DOI: 10.1002/anie.202003851
  2. Bardiya Valizadeh, Tu N. Nguyen, Stavroula Kampouri, Daniel T. Sun, Mounir D. Mensi, Kyriakos Stylianou, Berend Smit, Wendy L. Queen. A novel integrated Cr(vi) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020; DOI: 10.1039/d0ta01046d
May 11, 2020

Episode 378 - Maple Syrup Golden tongues and antioxidants

Taste testing maple syrup and long lasting antioxidants. How do you judge the taste of something as complex as maple syrup? How can a golden tongue help find gold, silver and bronze maple syrups? Antioxidants can keep food fresh and wounds safe, so how can they be made long lasting? Tannic acid often found in wines can make great antioxidants, but how to make their chemical effect long lasting? Fine woven meshes embedded with antioxidants can help flexible wrap food and wounds to keep them safe.

  1. Simon Forest, Trevor Théorêt, Julien Coutu, Jean-Francois Masson. A high-throughput plasmonic tongue using an aggregation assay and nonspecific interactions: classification of taste profiles in maple syrupAnalytical Methods, 2020; DOI: 10.1039/C9AY01942A
  2. Adwait Gaikwad, Hanna Hlushko, Parvin Karimineghlani, Victor Selin, Svetlana A. Sukhishvili. Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant ActivityACS Applied Materials & Interfaces, 2020; 12 (9): 11026 DOI: 10.1021/acsami.9b23212