Loading Downloads
Category: Science

A fun take on the latest science news with enough data to sink your teeth into. Lagrange Point goes beyond the glossy summary and gets in depth with the research from across the world.

November 9, 2020

Episode 404 - Ants , Acid, and Yeast that grow acid

Ants, acid and yeast that can grow their own acid. Ants use formic acid to keep their colony safe inside and out. By ingesting formic acid, Ants are able to ward off dangerous pathogens. Passing food with your mouth isn't very socially distant, but ants eat acid to make it safe. How can yeast be used to 'grow' materials needed to make perfume and dyes? Succinic acid is a useful chemical precursor, but its possible to grow yeast that are able yo produce on scale as a by product. Finding just the right genes with CRISPR and super computers can turn yeast into a chemical production powerhouse.

  1. Simon Tragust, Claudia Herrmann, Jane Häfner, Ronja Braasch, Christina Tilgen, Maria Hoock, Margarita Artemis Milidakis, Roy Gross, Heike Feldhaar. Formicine ants swallow their highly acidic poison for gut microbial selection and control. eLife, 2020; 9 DOI: 10.7554/eLife.60287
  2. Patrick F. Suthers, Hoang V. Dinh, Zia Fatma, Yihui Shen, Siu Hung Joshua Chan, Joshua D. Rabinowitz, Huimin Zhao, Costas D. Maranas. Genome-scale metabolic reconstruction of the non-model yeast Issatchenkia orientalis SD108 and its application to organic acids production. Metabolic Engineering Communications, 2020; 11: e00148 DOI: 10.1016/j.mec.2020.e00148
November 2, 2020

Episode 403 - Taking pollutants out of our water, factories and environment

How can we take pollutants easily out of our water, factories and environment? PFAS contamination is difficult to clear up, but a new method could attract, trap and destroy it with electrodes. PFAS can be found in many things, but taking it out of an area has often been very difficult. Using a tunenable electrode, in 3 hours you could extract and destroy PFAS in contaminated water. A combined clay and glass filter could neatly trap and extract CO2 from a gassy mixture. industrial processes often produce CO2 amongst other gases, but how can you quickly only separate out that CO2, reuse it and prevent it from being emitted? Lead in drinking water is a serious issue,but understanding the amount of exposure is difficult. A new method for analysing lead in drinking water tips acid onto 'filled' filters.

  1. Kwiyong Kim, Paola Baldaguez Medina, Johannes Elbert, Emmanuel Kayiwa, Roland D. Cusick, Yujie Men, Xiao Su. Molecular Tuning of Redox‐Copolymers for Selective Electrochemical Remediation. Advanced Functional Materials, 2020; 2004635 DOI: 10.1002/adfm.202004635
  2. Basic Information on PFAS. (2018, December 06). Retrieved October 31, 2020, from https://www.epa.gov/pfas/basic-information-pfas
  3. Martin Rieß, Renée Siegel, Jürgen Senker, Josef Breu. Diammonium-Pillared MOPS with Dynamic CO2 Selectivity. Cell Reports Physical Science, 2020; 100210 DOI: 10.1016/j.xcrp.2020.100210
  4. Weiyi Pan, Elizabeth R. Johnson, Daniel E. Giammar. Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. Environmental Science: Water Research & Technology, 2020; 6 (10): 2734 DOI: 10.1039/d0ew00496k
October 5, 2020

Episode 399 - Avoiding Fatbergs and Breaking down Plastic

Breaking up fatbergs, and breaking down plastic with smarter materials. Sewers are a dangerous place, with fat bergs and sulphuric acid, but can they be cleaned up? Portland Cement has helped build the modern world, but does it also cause problems in our sewers? how can we stop our sewers from corroding with better materials? Breaking down plastic takes a long time, but through in a super team of enzymes and it could be done in days. A super team of enzymes helps break down plastic and could lead to a circular economy.

  1. Brandon C. Knott, Erika Erickson, Mark D. Allen, Japheth E. Gado, Rosie Graham, Fiona L. Kearns, Isabel Pardo, Ece Topuzlu, Jared J. Anderson, Harry P. Austin, Graham Dominick, Christopher W. Johnson, Nicholas A. Rorrer, Caralyn J. Szostkiewicz, Valérie Copié, Christina M. Payne, H. Lee Woodcock, Bryon S. Donohoe, Gregg T. Beckham, John E. McGeehan. Characterization and engineering of a two-enzyme system for plastics depolymerizationProceedings of the National Academy of Sciences, 2020; 202006753 DOI: 10.1073/pnas.2006753117
  2. Rajeev Roychand, Jie Li, Saman De Silva, Mohammad Saberian, David Law, Biplob Kumar Pramanik. Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergsResources, Conservation and Recycling, 2021; 164: 105166 DOI: 10.1016/j.resconrec.2020.105166
September 21, 2020

Episode 397 - Ignobel Prize ‘20 - Physics

We celebrate the Ignobel Prizes once again, and this year we take a deep dive into the Physics prize for 2020. Faraday waves (standing waves in liquids or liquid filled objects) look pretty, but can anything filled with like have one? What about a worm? Can you make Faraday waves and resonant frequencies in Worms? What happens when a laser, a worm, and a speaker go into a lab? The result is an Ignobel Prize.

  1. Maksymov, I.S., Pototsky, A. Excitation of Faraday-like body waves in vibrated living earthworms. Sci Rep 10, 8564 (2020). https://doi.org/10.1038/s41598-020-65295-4
  2. 2020 Ceremony. (2020, September 18). Retrieved September 18, 2020, from https://www.improbable.com/ig-about/the-30th-first-annual-ig-nobel-prize-ceremony/
September 14, 2020

Episode 396 - Is that food safe to eat

Is that food safe to eat? How can you tell if food has gone bad beyond just reading a date? Ever been confused by best before or use by? A new type of label could make it a mater of colors. Color based labels could help detect if your food has gone bad or is contaminated by bacteria. How can we study the microbes that live inside our intestines? The gut microbiome is incredibly fascinating but difficult to study without damaging it. A tiny pill that takes snapshots of micro organisms inside your stomach as it passes through.

  1. Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply ChainAdvanced Functional Materials, 2020 DOI: 10.1002/adfm.202005370
  2. Lu Chen, Lina Gruzinskyte, Steffen Lynge Jørgensen, Anja Boisen, Sarvesh Kumar Srivastava. An Ingestible Self-Polymerizing System for Targeted Sampling of Gut Microbiota and BiomarkersACS Nano, 2020; DOI: 10.1021/acsnano.0c05426
August 3, 2020

Episode 390 - Cool fabrics, melting ice and recycling e-waste

From cool fabrics, to melting ice and recycling e-waste. How can a fabric let air through, but keep water out? Clothing that is breathable, water resistant and thermally efficient hits the sweet spot of a super fabric. Making clothes more efficient at cooling but also self cleaning can reduce our reliance on air conditioning. Using electricity and some polymers we can spin up some new cool clothing fabrics. Melting ice in your frozen over freezer can be made easier with biphillic materials. Materials that both hate and love water at the same time, can help melt ice and make heater exchangers more efficient. Recycling e-waste can be tricky, but what if we could use the by-products to  make new, stronger coatings for steel? Turning e-waste into a steel boosting coating.

  1. Rumana Hossain, Veena Sahajwalla. Material Microsurgery: Selective Synthesis of Materials via High-Temperature Chemistry for Microrecycling of Electronic Waste. ACS Omega, 2020; 5 (28): 17062 DOI: 10.1021/acsomega.0c00485
  2. Xi Yu, Yang Li, Xianfeng Wang, Yang Si, Jianyong Yu, Bin Ding. Thermoconductive, Moisture-Permeable, and Superhydrophobic Nanofibrous Membranes with Interpenetrated Boron Nitride Network for Personal Cooling Fabrics. ACS Applied Materials & Interfaces, 2020; 12 (28): 32078 DOI: 10.1021/acsami.0c04486
  3. Yashraj Gurumukhi, Shreyas Chavan, Soumyadip Sett, Kalyan Boyina, Srivasupradha Ramesh, Peter Sokalski, Kirk Fortelka, Maury Lira, Deokgeun Park, Juo-Yun Chen, Shreyas Hegde, Nenad Miljkovic. Dynamic Defrosting on Superhydrophobic and Biphilic Surfaces. Matter, 2020; DOI: 10.1016/j.matt.2020.06.029
July 20, 2020

Episode 388 - Cleaning, drinking and shaping water

Making water safe to drink, from evaporation to treatment. How do you simply evaporate water to make it safe? A piece of aluminium and a laser can hold the key to providing cheap and safe drinking water to the world. Pharmaceutical waste can build up in waster water, so how can it be treated? How can two little electrodes deal with the problem of pharmaceutical waste in water? Changing the course of a river can have huge consequences. What can we learn by studying the changes caused by the Panama Canal?

  1. Subhash C. Singh, Mohamed ElKabbash, Zilong Li, Xiaohan Li, Bhabesh Regmi, Matthew Madsen, Sohail A. Jalil, Zhibing Zhan, Jihua Zhang, Chunlei Guo. Solar-trackable super-wicking black metal panel for photothermal water sanitationNature Sustainability, 2020; DOI: 10.1038/s41893-020-0566-x
  2. Yassine Ouarda, Clément Trellu, Geoffroy Lesage, Matthieu Rivallin, Patrick Drogui, Marc Cretin. Electro-oxidation of secondary effluents from various wastewater plants for the removal of acetaminophen and dissolved organic matterScience of The Total Environment, 2020; 738: 140352 DOI: 10.1016/j.scitotenv.2020.140352
  3. Jorge Salgado, María I. Vélez, Catalina González-Arango, Neil L. Rose, Handong Yang, Carme Huguet, Juan S. Camacho, Aaron O'Dea. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basinScience of The Total Environment, 2020; 729: 138444 DOI: 10.1016/j.scitotenv.2020.138444
June 29, 2020

Episode 385 - Understanding what makes water stick together

What seems simple but it's deceptively complex. What makes water molecules stick together, or ice to float on top? Water has many mysteries, like ice floating on liquid. The key lies in the energy distribution. Shooting super high frequency lasers at water can help figure out what makes ice float or water stick together. Cheap and efficient ways to clean water is essential for saving lives across the globe. How can cyrstaline sponges help soak up bad chemicals like hexavalent chromium.

  1. Martina Havenith-Newen, Raffael Schwan, Chen Qu, Devendra Mani, Nitish Pal, Gerhard Schwaab, Joel M. Bowman, Gregory Tschumper. Observation of the low frequency spectrum of water trimer as a sensitive test of the water trimer potential and the dipole moment surface. Angewandte Chemie International Edition, 2020; DOI: 10.1002/anie.202003851
  2. Bardiya Valizadeh, Tu N. Nguyen, Stavroula Kampouri, Daniel T. Sun, Mounir D. Mensi, Kyriakos Stylianou, Berend Smit, Wendy L. Queen. A novel integrated Cr(vi) adsorption–photoreduction system using MOF@polymer composite beads. Journal of Materials Chemistry A, 2020; DOI: 10.1039/d0ta01046d
May 11, 2020

Episode 378 - Maple Syrup Golden tongues and antioxidants

Taste testing maple syrup and long lasting antioxidants. How do you judge the taste of something as complex as maple syrup? How can a golden tongue help find gold, silver and bronze maple syrups? Antioxidants can keep food fresh and wounds safe, so how can they be made long lasting? Tannic acid often found in wines can make great antioxidants, but how to make their chemical effect long lasting? Fine woven meshes embedded with antioxidants can help flexible wrap food and wounds to keep them safe.

  1. Simon Forest, Trevor Théorêt, Julien Coutu, Jean-Francois Masson. A high-throughput plasmonic tongue using an aggregation assay and nonspecific interactions: classification of taste profiles in maple syrupAnalytical Methods, 2020; DOI: 10.1039/C9AY01942A
  2. Adwait Gaikwad, Hanna Hlushko, Parvin Karimineghlani, Victor Selin, Svetlana A. Sukhishvili. Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant ActivityACS Applied Materials & Interfaces, 2020; 12 (9): 11026 DOI: 10.1021/acsami.9b23212
April 20, 2020

Episode 375 - Solar Panels that work at night and on greenhouses

From solar panels on greenhouses to ones that work at night. How can you use radiant heat to make a solar panel work at night? Is there a way to harness energy from the sun even at night? Can you cover a greenhouse with solar panels without destroying your crops? What's the tipping point for harvesting solar energy for your greenhouse? Balancing the light needs of solar panels and of crops in a greenhouse. How does the photosynthesis process know which path to take? Shinning a light on the photosynthetic process.

  1. Tristan Deppe, Jeremy N. Munday. Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling with Deep SpaceACS Photonics, 2019; 7 (1): 1 DOI: 10.1021/acsphotonics.9b00679
  2. Eshwar Ravishankar, Ronald E. Booth, Carole Saravitz, Heike Sederoff, Harald W. Ade, Brendan T. O’Connor. Achieving Net Zero Energy Greenhouses by Integrating Semitransparent Organic Solar CellsJoule, 2020; DOI: 10.1016/j.joule.2019.12.018
  3. Philip D. Laible, Deborah K. Hanson, James C. Buhrmaster, Gregory A. Tira, Kaitlyn M. Faries, Dewey Holten, Christine Kirmaier. Switching sides—Reengineered primary charge separation in the bacterial photosynthetic reaction centerProceedings of the National Academy of Sciences, 2020; 117 (2): 865 DOI: 10.1073/pnas.1916119117
April 13, 2020

Episode 374 - Lasers, Metal and Insect wings vs Bacteria

Taking the fight to bacteria with lasers, metal and insect wings. How can lasers help make a material into a bacteria destroyer? Metal in fantasy has demon slaying properties, but how can it help fight bacteria? What can we learn from insect wings to help make safer implants? What is it about silver that makes it good for killing bacteria (and werewolves). Why are metals so dangerous for bacteria? How can we treat and use metal to make medical devices safer from bacteria?

  1. Vidhya Selvamani, Amin Zareei, Ahmed Elkashif, Murali Kannan Maruthamuthu, Shirisha Chittiboyina, Davide Delisi, Zheng Li, Lirong Cai, Vilas G. Pol, Mohamed N. Seleem, Rahim Rahimi. Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing. Advanced Materials Interfaces, 2020; 1901890 DOI: 10.1002/admi.201901890
  2. Asmaa A. Sadoon, Prabhat Khadka, Jack Freeland, Ravi Kumar Gundampati, Ryan H. Manso, Mason Ruiz, Venkata R. Krishnamurthi, Suresh Kumar Thallapuranam, Jingyi Chen, Yong Wang. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria. Applied and Environmental Microbiology, 2020; 86 (6) DOI: 10.1128/AEM.02479-19
  3. J. Jenkins, J. Mantell, C. Neal, A. Gholinia, P. Verkade, A. H. Nobbs, B. Su. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-15471-x
March 30, 2020

Episode 372 - Flexible and wearable electronics

How can we make flexible electronics for our clothing? What does it take to make a screen that's flexible without relying on plastics? What aquatic by product can help make biodegradable, flexible electronics? Why do your towels go hard when you dry them in the sun? What happens on cotton fibres to make them stiffen up in the sun? How does fabric softener work - we're really not sure.

  1. Nara Kim, Samuel Lienemann, Ioannis Petsagkourakis, Desalegn Alemu Mengistie, Seyoung Kee, Thomas Ederth, Viktor Gueskine, Philippe Leclère, Roberto Lazzaroni, Xavier Crispin, Klas Tybrandt. Elastic conducting polymer composites in thermoelectric modulesNature Communications, 2020; 11 (1) DOI: 10.1038/s41467-020-15135-w
  2. Xiaopan Zhang, Tengyang Ye, Xianghao Meng, Zhihui Tian, Lihua Pang, Yaojie Han, Hai Li, Gang Lu, Fei Xiu, Hai-Dong Yu, Juqing Liu, Wei Huang. Sustainable and Transparent Fish Gelatin Films for Flexible Electroluminescent DevicesACS Nano, 2020; DOI: 10.1021/acsnano.9b09880
  3. Takako Igarashi, Masato Hoshi, Koichi Nakamura, Takeshi Kaharu, Ken-ichiro Murata. Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared SpectroscopyThe Journal of Physical Chemistry C, 2020; 124 (7): 4196 DOI: 10.1021/acs.jpcc.0c00423
February 24, 2020

Episode 367 - Sustainable and green Chemistry

Making chemistry green and sustainable, from cheaper catalyst to sorting solvents. How can you make catalysts cheaper and re-usable? Is there a cheaper catalyst to breakdown CO2? How can we make a circular carbon economy? Solvents play an important role in chemistry so how do you greenly find the right match? Green chemistry can be made more efficient using CO2.

  1. Youngdong Song, Ercan Ozdemir, Sreerangappa Ramesh, Aldiar Adishev, Saravanan Subramanian, Aadesh Harale, Mohammed Albuali, Bandar Abdullah Fadhel, Aqil Jamal, Dohyun Moon, Sun Hee Choi, Cafer T. Yavuz. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgOScience, 2020; 367 (6479): 777 DOI: 10.1126/science.aav2412
  2. Suyong Han, Keshav Raghuvanshi, Milad Abolhasani. Accelerated Material-Efficient Investigation of Switchable Hydrophilicity Solvents for Energy-Efficient Solvent RecoveryACS Sustainable Chemistry & Engineering, 2020; DOI: 10.1021/acssuschemeng.9b07304
October 28, 2019

Episode 350 - Developing, tracking, recycling new materials

Smart phones, computers, televisions and even children's toys are part of what makes our modern world so exciting. But these often rely on plastics and rare earth metals which are hard to recycle. Are there efficient ways to capture all those rare earth metals? How are rare earth metals in old phones recycled today, and can we make it better? Knowing which bin to put plastic in is difficult, so what if there was a more universal way to recycle plastics? How does turning plastic into a gas with the help of steam help create a circular plastic economy? How can some steam power help crack plastics back into their most basic forms? Is it possible to recycle plastics without to build whole new plastic refineries? Regulation is often playing catch up to making materials safe. Are the latest generation of 'safe' fire retardants any safer than those that came before? 



Robert F. Higgins, Thibault Cheisson, Bren E. Cole, Brian C. Manor, Patrick J. Carroll, Eric J Schelter. Magnetic Field Directed Rare-Earth Separations. Angewandte Chemie International Edition, 2019; DOI: 10.1002/anie.201911606

Arlene Blum, Mamta Behl, Linda S. Birnbaum, Miriam L. Diamond, Allison Phillips, Veena Singla, Nisha S. Sipes, Heather M. Stapleton, Marta Venier. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers? Environmental Science & Technology Letters, 2019; DOI: 10.1021/acs.estlett.9b00582

Henrik Thunman, Teresa Berdugo Vilches, Martin Seemann, Jelena Maric, Isabel Cañete Vela, Sébastien Pissot, Huong N.T. Nguyen. Circular use of plastics-transformation of existing petrochemical clusters into thermochemical recycling plants with 100% plastics recovery. Sustainable Materials and Technologies, 2019; 22: e00124 DOI: 10.1016/j.susmat.2019.e00124

October 14, 2019

Episode 348 - More efficient Lithium-Ion batteries and Organic Batteries

We launch from the Nobel Prize for Chemistry 2019 into current battery research and development. Creating the ubiquitous Lithium Ion battery took decades of collaborative research across the globe. How are scientists working together today to make the new generation of batteries? Can we improve LI batteries with new electrolyte mixes? How can we use Silicon instead of graphite in our batteries to give them a boost? Is it possible to make an organic recyclable battery? How can we use proteins and peptides to make organic batteries? Can we make batteries without damaging the environment?


  1. Nobel Foundation. (2019, October 9). Nobel Prize in Chemistry 2019: Lithium-ion batteries. ScienceDaily. Retrieved October 11, 2019 from www.sciencedaily.com/releases/2019/10/191009082508.htm
  2. Binghong Han, Chen Liao, Fulya Dogan, Stephen E. Trask, Saul H. Lapidus, John T. Vaughey, Baris Key. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca)ACS Applied Materials & Interfaces, 2019; 11 (33): 29780 DOI: 10.1021/acsami.9b07270
  3. American Chemical Society. (2019, August 26). Producing protein batteries for safer, environmentally friendly power storage. ScienceDaily. Retrieved October 12, 2019 from www.sciencedaily.com/releases/2019/08/190826092322.htm5
September 30, 2019

Episode 346 - Can washing machines help stop microplastics in oceans and make hospitals safer

Washing machines can save a lot of time and help clean up mess, but they can also harm our health and environment. Which washing process is better for the environment - full an fast or empty and delicate? How do washing machines help fill our oceans with microplastics? What can be done to help stop washing machines contributing to the microplastics in our waterways? Which washing setting is best for your health? Cold and clean or warm and soapy? How did a normal washing machine cause havoc in a hospital? How can you multi-drug resistant pathogens spread through a washing machine? 


  1. American Society for Microbiology. (2019, September 27). Your energy-efficient washing machine could be harboring pathogens: Lower temperatures used in 'energy saver' washing machines may not be killing all pathogens. ScienceDaily. Retrieved September 29, 2019 from www.sciencedaily.com/releases/2019/09/190927135202.htm
  2. Max R. Kelly, Neil J. Lant, Martyn Kurr, J. Grant Burgess. Importance of Water-Volume on the Release of Microplastic Fibers from LaundryEnvironmental Science & Technology, 2019; DOI: 10.1021/acs.est.9b03022
September 2, 2019

Episode 342 - Better chemistry and physics in everyday objects

How can we use physics and chemistry to help improve our everyday objects? Melting ice is very important for airplanes and air-conditioners. How can you melt unwanted on objects ice more efficiently? Ice on an airplane wing can be dangerous, so how do we melt it more efficiently. Flame retardants are important to stop fire spreading, but how do we make them safer and environmentally friendly? Flame retardants often rely on petroleum which are not environmental friendly. How can we stop flame retardants leeching into the environment or into our households? How do you get white paint without relying on environmentally intensive additives. What can beetles and recycle plastic teach us about making whiter paint.


  1. S. Chavan, T. Foulkes, Y. Gurumukhi, K. Boyina, K. F. Rabbi, N. Miljkovic. Pulse interfacial defrosting. Applied Physics Letters, 2019; 115 (7): 071601 DOI: 10.1063/1.5113845
  2. Stephanie L. Burg, Adam Washington, David M. Coles, Antonino Bianco, Daragh McLoughlin, Oleksandr O. Mykhaylyk, Julie Villanova, Andrew J. C. Dennison, Christopher J. Hill, Pete Vukusic, Scott Doak, Simon J. Martin, Mark Hutchings, Steven R. Parnell, Cvetelin Vasilev, Nigel Clarke, Anthony J. Ryan, Will Furnass, Mike Croucher, Robert M. Dalgliesh, Sylvain Prevost, Rajeev Dattani, Andrew Parker, Richard A. L. Jones, J. Patrick A. Fairclough, Andrew J. Parnell. Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent. Communications Chemistry, 2019; 2 (1) DOI: 10.1038/s42004-019-0202-8
  3. American Chemical Society. (2019, August 26). Flame retardants -- from plants. ScienceDaily. Retrieved August 31, 2019 from www.sciencedaily.com/releases/2019/08/190826092330.htm
June 24, 2019

Episode 332 - Affordable, smart and helpful prosthetics

Getting a prosthetic limb to feel natural and comfortable without spending a fortune is incredibly difficult. Plus the human body (and prosthetics) change over time. So how can you make a prosthetic better match it's user? We look at three stories of adaptive prosthetics and finding ways to make use of new technology to help improve lives. From building an elaborate treadmill contraption to hearing through your fingers.


When you stumble your brain goes into overdrive to keep you standing, but what exactly does it do? 


Affordable and comfortably fitting prosthetic limbs are especially important for children who grow out of them quickly. How can we make them more responsive?


Hearing words clearly in a noisy environment is especially hard on those with hearing aids. But can your fingers help out?


Vanderbilt University researchers built an elaborate treadmill to trip people, with the goal of helping advance prosthetic research. 


Using 3D scanning, printing and embedded sensors, researchers are making prosthetic better matched to their users.


People often say look with your eyes not your fingers, but can you use your fingers to hear as well?


Embedding sensors into 3D printed prosthetics can help adapt the design to better suit the actual wear and tear from the body. 


Using an elaborate tripping contraption on a treadmill, Vanderbilt university researchers hope to stop prosthetic leg users falling over. 


  1. Yuxin Tong, Ezgi Kucukdeger, Justin Halper, Ellen Cesewski, Elena Karakozoff, Alexander P. Haring, David McIlvain, Manjot Singh, Nikita Khandelwal, Alex Meholic, Sahil Laheri, Akshay Sharma, Blake N. Johnson. Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arrays. PLOS ONE, 2019; 14 (3): e0214120 DOI: 10.1371/journal.pone.0214120
  2. Shane T. King, Maura E. Eveld, Andrés Martínez, Karl E. Zelik, Michael Goldfarb. A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. Journal of NeuroEngineering and Rehabilitation, 2019; 16 (1) DOI: 10.1186/s12984-019-0527-7
  3. Katarzyna Cieśla, Tomasz Wolak, Artur Lorens, Benedetta Heimler, Henryk Skarżyński, Amir Amedi. Immediate improvement of speech-in-noise perception through multisensory stimulation via an auditory to tactile sensory substitution. Restorative Neurology and Neuroscience, 2019; 37 (2): 155 DOI: 10.3233/RNN-190898
June 17, 2019

Episode 331 - Making modern technology less energy intensive

Our modern world relies on energy, and some of it produce a lot of carbon dioxide. How can we make everything from air travel to wearable tech be less carbon intensive? Is there a way to make jet fuel or power ships that is carbon neutral? Just how much energy do crypto currency burn up? What is the impact of all this Bitcoin speculation on the health of the planet? From Fitbits to smart watches and Pokemon Go, wearable tech is a big trend, but how can we make these devices power themselves. There is a lot of excess energy when we walk and move, so can we use this to power our technology?


  1. ETH Zurich. (2019, June 13). Carbon-neutral fuel made from sunlight and air. ScienceDaily. Retrieved June 15, 2019 from www.sciencedaily.com/releases/2019/06/190613103146.htm
  2. Christian Stoll, Lena Klaaßen, Ulrich Gallersdörfer. The Carbon Footprint of BitcoinJoule, 2019; DOI: 10.1016/j.joule.2019.05.012
  3. Michael G. Stanford, John T. Li, Yieu Chyan, Zhe Wang, Winston Wang, James M. Tour. Laser-Induced Graphene Triboelectric NanogeneratorsACS Nano, 2019; DOI: 10.1021/acsnano.9b02596
May 13, 2019

Episode 326 - Capturing, reusing, recycling and cleaning water.

Water is essential for life, but we need to take care of the complete water cycle. Treating waste water can help remove harmful pollutants from cosmetics and medication. Industrial processes and landfill can also make super salty water, that we need to clean before releasing. Without good water management then we can end up without water in times of drought, and in times of flood more water than we can handle. This week we find out about ways to better manage the most precious of resources, water.


  1. Qian Yang, Bridget R Scanlon. How much water can be captured from flood flows to store in depleted aquifers for mitigating floods and droughts? A case study from Texas, US. Environmental Research Letters, 2019; 14 (5): 054011 DOI: 10.1088/1748-9326/ab148e
  2. Rui Zhao, Tingting Ma, Shuying Li, Yuyang Tian, Guangshan Zhu. Porous Aromatic Framework Modified Electrospun Fiber Membrane as a Highly Efficient and Reusable Adsorbent for Pharmaceuticals and Personal Care Products Removal. ACS Applied Materials & Interfaces, 2019; 11 (18): 16662 DOI: 10.1021/acsami.9b04326
  3. Chanhee Boo, Robert K. Winton, Kelly M. Conway, Ngai Yin Yip. Membrane-less and Non-evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environmental Science & Technology Letters, 2019; DOI: 10.1021/acs.estlett.9b00182